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A Steepest-Ascent Method for Solving 
Optimum Programming Problems 
A systematic and rapid steepest-ascent numerical procedure is described for solving 
two-point boundary-value problems in the calculus of variations for systems governed 
by a set of nonlinear ordinary differential equations. Numerical examples are pre-
sented for minimum time-to-climb and maximum altitude paths for a supersonic in-
terceptor and maximum-range paths for an orbital glider. 

A 

1 Summary 
SYSTEMATIC and rapid steepest-ascent numerical 

procedure is described for determining optimum programs for 
nonlinear systems with terminal constraints. The procedure 
uses the concept of local linearization around a nominal (non-
optimum) path. The effect on the terminal conditions of a small 
change in the control variable program is determined by numeri-
cal integration of the adjoint differential equations for small per-
turbations about the nominal path. Having these adjoint (or in-
fluence) functions, it is then possible to determine the change in 
the control variable program that gives maximum increase in the 
pay-off function for a given mean-square perturbation of 
the control variable program while simultaneously changing the 
terminal quantities by desired amounts. By repeating this proc-
ess in small steps, a control variable program that minimizes one 
quantity and yields specified values of other terminal quantities 
can be approached as closely as desired. Three numerical ex-
amples are presented: (a) The angle-of-attack program for a 
typical supersonic interceptor to climb to altitude in minimum 
time is determined with and without specified terminal velocity 
and heading. (6) The angle-of-attack program for the same 
interceptor to climb to maximum altitude is determined, (c) The 
angle-of-attack program is determined for a hypersonic orbital 
glider to obtain maximum surface range starting from satellite 
speed at 300,000 ft altitude. 

2 Introduction 
Optimum programming problems arise in connection with proc-

esses developing in time or space, in which one or more control 
variables must be programmed to achieve certain terminal con-
ditions. The problem is to determine, out of all possible pro-
grams for the control variables, the one program that maximizes 
(or minimizes) one terminal quantity while simultaneously yield-
ing specified values of certain other terminal quantities. 

The calculus of variations is the classical tool for solving 
such problems. However, until quite recently, only rather simple 
problems had been solved with this tool owing to computational 
difficulties. Even with a high-speed digital computer these 
problems are quite difficult because, in the classical formulation, 
they are two-point boundary-value problems for a set of nonlinear 
ordinary differential equations. Numerical solution requires 
guessing the missing boundary conditions at the initial point, 
integrating the differential equations numerically to the terminal 

point, finding how badly the specified terminal boundary condi-
tions are missed, and then attempting to improve the guess of the 
unspecified initial conditions. This process must be repeated 
over and over until all terminal conditions are satisfied. This 
process is not only tedious, expensive, and frustrating, it some-
times does not seem to work at all [l].1 It is remarkably sensi-
tive to small changes in the initial conditions; however, it can be 
made to work through great patience, good guessing, and second-
order multiple interpolation [2, 3, 4]. 

Recently Kelley [5, 6] and the authors with several coworkers 
[7, 8] have revived a little-known procedure which offers a prac-
tical, straightforward method for finding numerical solutions to 
even the most complicated optimum programming problems. It 
is essentially a steepest-ascent method and it requires the use of a 
high-speed digital computer. 

3 A Maximum Problem in Ordinary Calculus 
In order to explain the steepest-ascent method it is helpful to 

consider its use in a simpler problem first; namely, the problem 
of finding the maximum of a nonlinear function of man}' variables 
subject to nonlinear constraints on these variables. This is a 
problem in the ordinary calculus. A quite general problem of this 
type can be stated as follows: 

Determine a so as to maximize 

0 = <£(*)> 

subject to the constraints 

4 = ife(x) = 0, 

f(x, a ) + f0 = 0 

(1) 

(2) 

(3) 
where 
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4 = 

Xl 

.iv-

, an m X 1 matrix of control variables, which we are 
free to choose, (4) 

, an » X 1 matrix of state variables, which result from 
the choice of a, (5) 

, a p X 1 matrix of constraint functions, each a 
known function of x, (6) 

1 Numbers in brackets designate References at end of paper. 
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<f> is the pay-off function, a known function of x, (7) 

fo = 

L / J 

_fnO_ 

, an ii X 1 matrix of known functions of x and a, (8) 

, an n X 1 matrix of constants (9) 

where 

F = 

Fdx + = 0 

•(MlY ( V L \ 
\dxj ' ' " ' \dxj 

(12) 

G = 

( d t ) " 

• " ( a ^ r ) 

(13) 

(ZLV ( a / , y 

(14) 

( | f ) * + V F = o, 

(f)-
 + V F = 0

, 
(17) 

(18) 

where 

dx L a^i' ' " 
d<t> "[ dt| 
da. J ' dx 

4 Steepest-Ascent M e t h o d in Ord ina ry Calculus 
The maximum problem stated in the preceding section can be 

solved systematically and rapidly on a high-speed digital com-
puter using the steepest-ascent method. This method starts 
with a nominal control variable matrix a*, and then improves 
this estimate by determining the direction of steepest ascent in 
the a hyperspace; this determination is made by a linearization 
about the nominal point in the a hyperspace. The method pro-
ceeds as follows: 

(а) Guess some reasonable control variables a*, and use them 
in equations (3) to calculate numerically the state variables x* 
that correspond to this choice. In general, this nominal "point" 
will not satisfy the constraint conditions i[r = 0, or yield the maxi-
mum value of <j>. 

(б) Consider small perturbations da, about the nominal control 
variable point where 

da = a - a* (10) 

These perturbations will cause perturbations dx in the state 
variables, where 

dx = x - x* (11) 

Taking differentials of equations (3) we obtain to first order in 
the perturbations the linear set of equations for dx, 

dxi 

dx, ' 

dx,, 

dx„ 

, (19) 

and ( )'indicates the transpose of ( ); i.e., rows and columns are 
interchanged. 

Note that the are influence numbers since they tell how much 
<j) or ij; is changed by small changes in the constraint levels f0. 

For steepest ascent, we wish to find the da matrix that maxi-
mizes dip in equation (15) for a given value of the positive definite 
quadratic form 

(dPy = da'Wda, (20) 

and given values of dtjr in equations (16). The values of dx\ are 
chosen to bring the nominal solution closer to the specified con-
straints, ijr = 0. Choice of dP is made to insure that the perturba-
tions da will be small enough for the linearization leading to equa-
tions (12) to be reasonable. W is an arbitrary non-negative defi-
nite m X m matrix of weighting numbers, essentially a metric in 
the a hyperspace; it is at the disposal of the "optimizer" to 
improve convergence of the procedure. 

The proper choice of da is derived in section 2 of the Appendix 
and the result is 

da = ±W-'G'(^ - ^W-'W) 
RrfP)3 - rfg'l^-'rfgl'A 
L ^W — l ^ ' l ^ " 1 ! ^ J 

+ W - ' G O ^ - > d ( 5 (21) 

where 
c/[3 = d\\ — X^'dfa, 
\H = V G W - ' G ' ^ , 
U = V G W - ' G % , 
Iw = V G W - ' G ' * , 

(22) 

4>> 

( ) _ 1 indicates inverse matrix, and the + sign is used if <f> is to be 
increased, the — sign if $ is to be decreased. Note that the 
numerator under the square root in equation (21) can become 
negative if dQ is chosen too large; thus there is a limit to the size 
of dQ for a given dP. Since dP is chosen to insure valid lineariza-
tion, the dQ asked for must also be limited. The predicted change 
in <f> for the change in control variables of equation (21) is 

d<p = ±[((dP)2 - - I^V-V)]'7' 

+ l^ ' l^- 'dJS + Vtffo- (23) 

and ( )* indicates that the partial derivatives are evaluated at the 
nominal point. Using Lagrange multipliers (Appendix, sec-
tion 1), we may write 

d<f> = V G d a + V<tfo (15) 

dit = VGda + V d f o (16) 

where the X matrices are determined by the linear equations 

Notice if di[r = 0, dl0 — 0, equation (23) becomes 

d<j) j / 
— = — l^ ' l^ f . - 1 !^ ) (24) 

which is the magnitude of the gradient in the « hyperspace, since 
dP is the length of the step in the a hyperspace. As the maximum 
is approached and the constraints are met (dtl» = 0), this gradient 
must tend to zero, which results in 
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d<(> = l ^ ' l w ^ i f c + ( V - l ^ ' l W " l V ) d f 0 (25) 

This relation shows how much the maximum pay-off function 
changes for small changes in the constraint levels, 

(c) A new control variable point is obtained as 

« N E W = A O L D + D A 

where doc is obtained from equation (21). 0 !NEW is used in 
•the original nonlinear equations (3) and the whole process is 
repeated several times until the ^ = 0 constraints are met and 
the gradient is nearly zero in equation (24). The maximum 
value of <t> has then been obtained. 

This process can be likened to climbing a mountain in a dense 
fog. We cannot see the top but we ought to be able to get there 
by always climbing in the direction of steepest ascent. If we do 
this in steps, climbing in one direction until we have traveled a 
certain horizontal distance, then reassessing the direction of 
steepest ascent, climbing in that direction, and so on, this is the 
exact analog of the procedure suggested here in a space of ?«-di-
mensions where 0 is altitude and a\, a2 are co-ordinates in the 
horizontal plane, Fig. 1. There is, of course, a risk here in that 
we may climb a secondary peak and, in the fog, never become 
aware of our mistake. 

5 Optimum Programming, a Problem in the Calculus of 
Variations 

An optimum programming problem of considerable generality 
can be stated as follows, Fig. 2: 

Determine a (I) in the interval tn < t < 'J', so as to maximize 

0 = <t>(x(T), T), 

subject to the constraints, 

tlr = t k ( x ( n T) = 0, 

dx 
dt 

= f (x«) , a (I), 0 , 

to and xfto) given, 

T determined by fi = fi(x(!T), T) = 0 

The nomenclature of the problem is as follows: 

« ( 0 = 

*«) = 

l!r = 

, an in X 1 matrix of control variable pro- (31) 
grams, which we are free to choose, 

, an » X 1 matrix of state variable programs, (32) 
which result from a choice of a(<) and 
given values of x(t<>), 

, a p X 1 matrix of terminal constraint func-
tions, each of which is a known function of (33) 
x{T) and T, 

' If an integral is to be maximized, simply introduce an additional 
state variable xq and an additional differential equation Xq = g(x, a, 
I) where q is the integrand of the integral. xq(T) is then maximized 
with xq(h) = 0. 

® In some problems not all of the state variables are specified 
initially; in this case the unspecified state variables may be deter-
mined along with a(t) to maximize <f>. 

Fig. 1 Finding maximum of a function of two variables by steepest-
ascent method 

TERMINAL POINT 
t s T 

INITIAL POINT 

(26)
2 

(27) 

(28) 

(29) ' 

(30) 

3 f * f l X , « , t > 

Fig. 2 Symbolic sketch of optimum programming problem 

<j> is the pay-off function and is known function of x(7') and T, 
(34) 

7 i " 

f = 

L / J 

, an » X 1 matrix of known functions of x(<), (35) 
a(t), and t, 

fi = 0 is the stopping condition that determines final time T, 
and is a known function of x{T) and T (36) 

The formulation of the necessary conditions for an extremal 
solution to this problem has been given by Breakwell [2] with 
the added complexity of inequality constraints on the control 
variables. The present paper is concerned with the efficient and 
rapid solution of such problems using a steepest-ascent procedure. 

6 Steepest-Ascent Method in Calculus of Variations 
The optimum programming problem stated in the preceding 

section can be solved systematically and rapidly on a high-speed 
digital computer using the steepest-ascent technique. This 
technique starts with a nominal control variable program a*(<), 
and then improves this program in steps, using information ob-
tained by a mathematical diagnosis of the program for the pre-
vious step. Conceptually it is a process of local linearization 
around the path of the previous step. The method proceeds as 
follows: 

(a) Guess some reasonable control variable programs QC*(t), 
and use them with the initial conditions (29) and the differential 
equations (28) to calculate, numerically, the state variable pro-
grams x*(t) until fi = 0. In general, this nominal "path" will 
not satisfy the terminal conditions i]; = 0, or yield the maximum 
possible value of <f>. 

(b) Consider small perturbations 5a(<) about the nominal con-
trol variable programs, where 
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3a = a(<) - a*(t) (37) and 

These perturbations will cause perturbations in the state variable 
programs 8x(0> where 

Sx = x(0 - x*(0 (38) 

Substituting these relations into the differential equations (28) 
we obtain, to first order in the perturbations, the linear differen-
tial equations for 8x, 

where 

4 (fix) = F(08x + G(0Sa, at 

( dxi) ' ( dx„ ) 

(39) 

F(0 = 

G ( 0 = 

( dzi ) ' ( dx„ ) 

Y y / d/i Y 
\ £>a, J ' V dam J 

V / ' \da ,„ / 

(40) 

£ -
with boundary conditions 

where 

d<f> _ f t ) 0 

dx L dxi' 
>±i = 
•xn J ' dx dx 

Mi 
dxi 

dx.i 

dxn 

dx„ 

( )' indicates the transpose of ( ); i.e., rows and columns are in-
terchanged. 

Note that the X are influence functions since they tell how much 
a certain terminal condition is changed by a small change in some 
initial state variable. Note also that the adjoint equations (47) 
must be integrated backward since the boundary conditions are 
given at the terminal point, I = T. 

For steepest ascent we wish to find the Sa(0 programs that 
maximize d<f> in equation (42) for a given value of the integral 

(dP)* = f T 8a'(t)W(l)8a(l)dt, 
J to 

m 

(41) 

and ( )* indicates that the partial derivatives are evaluated along 
the nominal path. From the theory of adjoint equations, section 
3 of the Appendix, we may write 

dcj> = f ^ V ( 0 G ( 0 8 « ( 0 d < + V( ' o )Sx (M + 4>dT, (42) 
J to 

= J ^ V ( 0 G ( 0 8 a ( 0 d < + V( 'o)8x(/o) + ¥ t < (43) 

rffi = f T Vn(OG(08a(0<« + *n'(<o)5x(/„) + tidT, (44) 
J to 

where the elements of the X matrices are determined by numerical 
integration of the differential equations adjoint to equations 
(39); namely, 

given values of d^ in equations (43) and dO. — 0 in equation 
(44). The values of dx̂  are chosen to bring the nominal solution 
closer to the desired terminal constraints, tTr = 0. Choice of dP 
is made to insure that the perturbations Sa(0 will be small enough 
for the linearization leading to equations (46) to be reasonable. 
W ( 0 is an arbitrary symmetric m X m matrix of weighting func-
tions chosen to improve convergence of the steepest-ascent pro-
cedure; in some problems it is desirable to subdue 8a in certain 
highly sensitive regions in favor of larger 8a in the less sensitive 
regions. 

The proper choice of 8a(0 is derived in section 4 of the Ap-
pendix and the result is 

8 « ( 0 = ± W - G ' C W - V W - W ) 1 
'A 

+ W - ' G ' ^ n l ^ - ' d ? , (50) 

where 

(45) (51) 

\Ox/i=T \Ox /t = T 

W ) = ( f ) U (46) 

dfi _ r dfi J ) Q l 
i)X L ' c)x„ J ' 

d(3 = - V ( ' o )8x ( / o ) , 

n 

XJ-si = — Xn 
U 

/•T 
Im, = I Xd,Q'GV/~'G'X,indt, 

J to 

J to 

fT 
I$$ = I 'Xsndt, 

J to 

( ) _ 1 indicates inverse matrix, and the + sign is used if 4> is to be 
increased, the — sign is used if </> is to be decreased. Note that 
the numerator under the square root in equation (50) can become 
negative if d{3 is chosen too large; thus there is a limit to the size 
of dti for a given dP. Since dP is chosen to insure valid lineariza-
tion, the <2(3 asked for must also be limited. The predicted change 
in <t> for the change in control variable program (50) is 

d<f> = ± [((dP)2 - dQ'^-'dWIw -

+ + ^n'(/o)8x(/o) (52) 

Notice that if d\J; = 0, 8x(/0) = 0, equation (52) becomes 

d(f) ,, 
(53) 

2 5 0 / J U N E 1 9 6 2 Transactions of the AS M E 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/21/2013 Terms of Use: http://asme.org/terms



which is a "gradient" in function space, since dP is the "length" 
of the step in the control variable programs. As the optimum 
program is approached and the terminal constraints are met (dtJ; 
= 0), this gradient must tend to zero, which results in 

d<j) = l ^ ' l ^ - ' d t j r + [^n ' ( fo ) — (54) 

This relation shows how much the maximum pay-off function 
changes for small changes in the terminal constraints and for 
small changes in the initial conditions. 

(c) New control variable programs are obtained as 

O ! N E W ( 0 = a o L D W + S a ( I ) ( 5 5 ) 

where 5a is given in equation (50). o:NEW(2) is used in the 
original nonlinear differential equations (28) and the whole process 
is repeated several times until the terminal constraints are met 
and the gradient is nearly zero in equation (53). The optimum 
program has then been obtained. 

Note that minimizing final lime T fits into this pattern con-
veniently. For this case we let 0 = —t which implies <j> = — 1, 

= 0, and hence 

1 

d* = -dT = f 

dT = - — 
0 
I C T 

6 Jto 
Xa'GSctdt 

If \d'l'\ is greater than a preselected maximum allowable value, 
scale clown 8a(t) to achieve this maximum value. 

Journal of Applied Mechanics 

(k) Obtain a new nominal path by using OINEW = ttoi.n + 8a 
and repeat processes (a) through (k) until the terminal con-
straints i|r = 0 are satisfied and the square of the gradient, — 

tends to zero. 

8 Examp le 1 
Angle-of -AHack Program for a Supersonic Interceptor to Climb From 

Sea Level to a Given Alt i tude in Least Time. A t y p i c a l s u p e r s o n i c i n -
terceptor is considered with lift, drag, and thrust characteristics 
as shown in Fig. 4. The vehicle is considered as a mass point 
(short period pitching motions are thus neglected) and the nomen-
clature used is shown in Fig. 3. The problem is to find the angle-
of-attack program a(t), using maximum thrust, that takes the 
interceptor to a given final altitude in the least time, starting just 
after take-off at M = 0.22, y = 0, at sea level (h = 0). First the 
problem is solved with no terminal constraints, then with M = 
0.9 specified at the terminal point, then with M = 0.9 and 7 = 0 
at the terminal point. The differential equations for the inter-
ceptor path are 

. F(h, M) D(h, M, a) . 
V = cos a — g sin 7 (57) 

T 4 ^a'GSadt + 4 - Xa'(to)Sx(t0) (56) 
>" n n 

L(h, M, a) F(h, M) . 
7 = — (- —— sin a 

cos 7 

mV 

7 C o m p u t i n g Procedures 
The computing procedures evolved over a period of time in 

solving many types of problems are summarized here. The com-
puter used for all these problems was an I B M 704. 

(а) Compute the nominal path by integrating the nonlinear 
physical differential equations with a nominal control variable 
program and appropriate (here assumed fixed) initial conditions 
and store the solution on tape. 

(б) Compute the ^ 1, . . . ^a functions all at the 
same time by integrating the adjoint differential equations back-
ward, evaluating the partial derivatives on the nominal path by 
reference to the tape in (a). 

(c) Simultaneously with (6), calculate the quantities 
• • • ^pS! and store ?v^<i'G and X^n'G on tape. 

(d) Also simultaneously with (b) and (c) perform the inte-
grations (backward) leading to the numbers I 

(e) Print out the values of (j>, \pu \j/2, . • • achieved by the 
nominal path. 

( / ) Select desired terminal condition changes d\j/1, rf^j,... d\f/p 

to bring the next solution closer to the specified values t|r = 0 
than were achieved by the nominal path. 

(g) Select a reasonable value of (dP)2/(T — to), which is a 
mean-square deviation of the control variable programs from 
the nominal to the next step. 

(/i) Use the values of rftjr and dP to calculate (dP )2 — 
rfijr'l^^-1!/^; if this quantity is negative, automatically scale down 
d\p to make this quantity vanish. If the quantity is positive, 
leave it as is. 

(?') Using the values of dP and cZtJ; (modified by (h) if necessary) 
calculate 8«(t) from equation (50), (5x(/o) = 0). 

(j) If final time, T, is not specified or being extremalized, com-
pute the predicted change, dT, for the next step: 

mV 

h = V sin 7 

x = V cos 7 

til = m{li, M) 

(58) 

(59) 

(60) 

(61) 

where ( ' ) means — ( ), and 
dt 

F = F(h, JV) is thrust, given as a tabular function, Fig. 4(a) 

D = CD(a, M) P-Vy- is drag 

L = CL{a, M) is lift 

CD(a, M), Ch(a, M) are given as tabular functions, Fig. 4(6) 

p = p(h) is air density, given as a tabular function 

g = acceleration due to gravit}' (taken as constant here) 

M — — is Mach number 
a 

A L T I T U D E L IFT 
Z E R O - L I F T AXIS 

•VELOCITY.V 

H O R I Z O N T A L 

Fig. 3 Nomenclature used in analysis of supersonic interceptor 
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da 

Cd 0 x io 2 

versus Mach 

LO IjB 
MACH NUMBER 

Fig. 4(c) Supersonic interceptor—altitude versus Mach number for 
steady level flight 

Fig. 4(a) Supersonic interceptor-
number and angle-of-attack 

0.8 
MACH NUMBER 

lift and drag coefficient 

h-ALTITUDE 
H'MAXIMUM ALTITUDE FOR 

STEADY HORIZONTAL FLIGHT 

0.4 OB 1.2 1.6 2.0 
MACH NUMBER 

Fig. 4(b) Supersonic interceptor—thrust versus Mach number and alti-
tude 

a = a{h) is speed of sound, given as a tabular function 
m(h, M) is fuel consumption, given as a tabular function 
m is mass of vehicle 

The adjoint differential equations are: 

X + X / c o s a dF _ 2D_ J _ dCp\ 
V r \ ma dM mV ma CD dM J 

/ g cos y _L_ 
\ I " m l " 

+ L i act 

mVa CL dM 
F sin a 

mV 

+ mVa 

^ + XV (~9 COS 7) + \y 

1 dm 
+ X4 sin 7 + \x cos 7 + A„ - —— = 0 

a dM 

in a dF \ 
nVa ~dMj 

(gs in -yN 
I — y — ) + AAF cos 7 

- XxV sin 7 = 0 (63) 

X + x ( . . . D 1 d p | D 1 d ° D M 0x1 C0S " b F \ 
h 1 \ m p clh m CD dM a dh m dh J 

+ 

; . ( D F cos a\ . ( L F sin a\ 

(66) 

In the nomenclature of Sections 5 and 6, three cases were cal-
culated : 

Case <f> ip2 £2 
1 - I , - , h - H 
2 -t, M - 0.9, - , h - H (67) 
3 -I, M - 0.9, 7 , h - H 

where H is the final altitude desired, taken in this case as the 
maximum altitude for steady horizontal flight (the service ceil-
ing). Initial conditions were 

M 0.22 
7 = 0 
h = 0 
x = 0 

TKo 
0 

(68) 

m — 

(62) 

/ L l d p _ _ t SCi M da Bin a dF\ 
7 \mV p dh ~ mV CL dM a dh mV dh ) (°4) 

X, = 0 

£»h 

(65) 

where TFo is the initial weight. 
The results are shown in Fig. 5. The trajectories all show the 

"zoom" characteristic found by other investigators [9]; the air-
plane first climbs, then dives accelerating through sonic speed, 
then pulls up, trading kinetic for potential energy in the earth's 
gravitational field. This characteristic appears to be caused by 
the sharp transonic drag rise, the rapid thrust attenuation with 
altitude, and the thrust increase with Mach number. These 
surprising trajectories show the danger in using classical per-
formance methods on high-performance airplanes. The quasi-
steady analysis to determine local maximum rate-of-climb shows 
an almost constant slightly subsonic Mach number to be the best 
for climb. If the airplane is flown this way, it takes nearly twice 
as long to reach the altitude H as it does with the trajectories 
shown in Fig. 5. This quasi-steady flight path was used as the 
nominal path in the steepest-ascent method and the optimum 
path was reached in six or seven "steps." 

Note that the addition of the M = 0.9 terminal constraint in-
creased the minimum time to climb by 8 per cent. Further addi-
tion of the 7 = 0 terminal constraint increased the minimum 
time to climb less than '/a per cent. The angle-of-attack pro-
grams are not at all unusual and should not be difficult to ap-
proximate for actual flight situations. 
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h« ALTITUDE | 
H'MAXIMUM ALTITUDE FOR 

STEADY HORIZONTAL FLIGHT 

FLIGHT PATH ANGLE CONSTRAINED TO ZERO 
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Fig. 5(o) Supersonic interceptor—flight path for min imum t ime to climb 
to service ceiling f rom sea level—alt i tude versus range 
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Fig. 5(c) Supersonic interceptor—flight path for min imum t ime to cl imb 
to service ceiling from sea level—angle-of-at tack versus range 
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Fig. 5 ( d ) Supersonic interceptor—flight path for min imum t ime to cl imb 
to service ceiling from sea level—angle-of-at tack versus t ime 
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Fig. 5(b) Supersonic interceptor—flight path for min imum t ime to cl imb 
to service ceiling from sea level—alt i tude versus M a c h number 

9 Example 2 
Angle-of -At tack Program for a Supersonic Interceptor to Cl imb to 

Maximum Altitude. The same airplane considered in Section 8 is 
used here with the pay-off function, <fi, being altitude, h. The 
stopping condition is 0 = 7 = 0; i.e., flight-path angle zero. 
The initial condition was taken as the maximum energy condi-
tion for stead}' horizontal flight, where energy per unit mass is 
( F 2 / 2 ) + gh; i.e., kinetic plus potential energy. This maximum 
energy condition occurred at 

2.0 

1.5 

> 
0.5 

• 1 1 1 
h « ALTITUDE 1 

H • MAXIMUM ALTITUDE FOR STEADY 
HORIZONTAL FLIGHT 

X • H ORIZONTO L DISTAN CE r 

0 1 2 3 4 5 6 7 

H 

Fig. 6(a) Supersonic interceptor—flight path for m a x i m u m al t i tude—al-
titude versus range 

h 
- - 0.81 

7 = 0 

M = 2.1 

In this case no terminal constraints were used. The physical and 
adjoint equations are the same as those in Section 8. 

The resulting flight path is shown in Fig. 6. It again contains 
a preliminary climb and dive, followed by a zoom to the maxi-
mum altitude which is 64 per cent higher than the service ceiling 
(maximum altitude for steady horizontal flight). If all the energy 

2.0 

1.5-

> 
.5 

\ 
\ 

h • ALTITUDE 
H « MAXIMUM ALTITUDE FOR 

HORIZONTAL FLIGHT 
1 1 

STEADY 

1.0 1.5 
MACH NUMBER 

2.0 2.5 

Fig. 6(b) Supersonic interceptor—flight path for m a x i m u m al t i tude—al-
titude versus M a c h number 

Journal of Applied Mechanics J U N E 1 9 6 2 / 2 5 3 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/21/2013 Terms of Use: http://asme.org/terms



Fig. 6(c) Supersonic interceptor—flight path for maximum altitude— 
angle-of-attack versus range 

Fig. 7 Nomenclature used in analysis of hypersonic orbital glider 
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Fig. 6(d) Supersonic interceptor—flight path for maximum altitude— 
angle-of-attack versus time 
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Fig. 8 Hypersonic orbital glider—lift and drag coefficients as functions 
of angle-of-attack 
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could be converted into potential energy, the maximum altitude 
would be 97 per cent higher than the service ceiling. Note that 
the thrust essentially vanishes near h/II = 4 /3 : actually the 
turbojet engines will "blow out" somewhere near this latter 
altitude. 

10 Example 3 
Angle-of-AHack Program for a Hypersonic Orbital Glider to Achieve 

Maximum Range. The problem here is to find the angle-of-attack 
program a{t) for a hypersonic glider to achieve maximum range 
on the surface of the earth, starting from the point where it has 
been injected into a low-altitude satellite orbit by a rocket booster. 
The nomenclature for the analysis is shown in Fig. 7, and the lift-
drag characteristics are shown in Fig. 8. The wing loading used 
was 

^ = 27.3 lb f t - ' 
S 

where 
m = mass of vehicle 
g0 — acceleration of gravity at earth's surface 
S = wing plan-form area 

The initial conditions used were 

V = 25,920 ft see"1 

y = 0.18 deg 
h = 300,000 ft 

convenient to use distance along the flight path, s, as the indepen-
dent variable in solving the differential equations. The physical 
differential equations used are: 

dV 
ds 

D(h, M, a) g(h) sin 7 

mV V 
(70) 

dy cos 7 + L(h, M, a) _ g(h) cos 7 ^ ^ 

R + h mV2 

dh 
—— = sin 7 
ds 

dx cos 7 

V2 

dt J _ 
V 

(72) 

(73) 

(74) 

where 

(69) 

Owing to the wide range of velocities encountered in this 
problem (landing speeds were around 200 ft s e c - 1 ) it was found 

( R Y , • , 
0 = So I i r~ .—T I 1 acceleration due to gravity 

\ K + h / 

R = radius of earth (3440 nautical miles) 

D = CD(a) i p(h)V2S, drag force A 

L = CL(oc) — p(h)V2S, lift force 
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p = p(/i), density of atmosphere, a tabular function ( A R D C 
standard atmosphere used) 

CD = CD„ + Cj5L|sin3 a|, CDc = 0.042, CDh = 1.46, Newtonian 
drag coefficient 

CL = Clo sin OL |sin a | cos A, CL0 = 1.82, Newtonian lift co-
efficient 

The adjoint differential equations for the influence functions 
are: 

5 0 0 

(75) 

g sin y 
V2 

sin y 
R + /i . 

d\h 

ds (2g sin y D 1 dp \ 

V\R + h) ~ mF2 7 ~dh) 
/ 2<? c o s 7 _ 

7 V + ' » ) (R + hy 

c o s 7 L 

+ K -
c o s y 

< 
7)1 F

2 

= 0, 

1 
p dh J 

w h e r e 

^ = 0, 

ds 

X„ = FX j', 

TRAJECTORY F(j)R MAXIMUM RANGE— 

50 ^RAJgCTOI IY POR MAXIMUM L / D 

I I 
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V0« 25,920 FT/SEC 
ho"300,000 FT 
y0-O.I8 DEC 

•273 LBS/FT 2 

5 10 IS 20 25 30 35 
X-SURFACE RANGE IN THOUSANDS OF NAUTICAL MILES 

Fig. 9(a) Hypersonic orbital gl ider—alt i tude versus range 

+ cos 7 = 0, (76) 

( 7 7 ) 

0 s 
1 

? 

I 
fe 

/ A N G L i -OF-A TACK F 3R ( L / l >MA*2 

>- (\ 
* * *

 m 

ANG .E-OF-A 
k 
TTACKF )R MAX MUM R/ MGE 

1 
NITIAL CONDITION 
v 25,920 FT/SEC 
h0«300;D00 FT 
y0"0.18 DEG 
m o . 

27.3 LBS/FT 
>• 

NITIAL CONDITION 
v 25,920 FT/SEC 
h0«300;D00 FT 
y0"0.18 DEG 
m o . 

27.3 LBS/FT 

(78) 

(79) 

(80) 

w = log - — (F 0 some reference velocity) 
Fo 

The resulting flight path is shown in Fig. 9(a). For comparison 
the flight path for a = 20.5 deg is as shown; this is the angle-of-
attack for maximum lift-to-drag ratio, which is in this case 
(L/D)mox = 2.0. It can be seen that the optimum a(t) program 
differs from the a = 20.5 deg path most significantly in the first 
10 min of the flight; this is truly the critical part of the flight. 
The optimum path achieves 15 per cent more range than the 
maximum L/D path. Again the optimum control variable pro-
gram, Fig. 9(6) should not be difficult, to approximate in practice. 
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A P P E N D I X 
1 Use of LaGrange Multipliers for Small Perturbations About a G iven 

Control Var iable Point. 

For the maximum problem stated in Section 3 of the paper, we 
wish to determine the changes in <p and t|/ for a small perturbation 
da in the control variables from a nominal point a*. To do this 
consider first the quantity 

$ = <fi(x) + V ( f ( x , «) + fo) (81) 

where is a row matrix of Lagrange multipliers to be deter-
mined for our convenience. Note that the term multiplying X,/,' 
is zero by equation (3) so that $ = </>. Take the differential of 
this quantity: 

dx + 
d f 

da + X/,' dfo, 
dx dx / da 

and evaluate the partial derivatives at the nominal point a* 

(82) 
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= d<t> = + V F ) dx + V G d a + V<*fo, (83) 

svhere the nomenclature is explained in Section 4 of the paper. 
Now let us choose V so that the coefficient of dx vanishes; i.e., 

+ V F = 0, (2) 

m 
+ V F = 0 (88) 

2 Steepest-Ascent Method in Ordinary Calculus Using a Weighted 

Square Perturbation of the Control Variables to Determine Step Size. 

The problem, as stated in Section 4 of the text, is to choose da 
so as to maximize d<f> for given values of d\]>, dfo (usually zero), and 
6P, where 

d<f> = VGda + Vdf» 

= X/Gda + X+'d(0 

{dPy = da'Wda 

(89) 

(90) 

(91) 

We use the process of Section 1 of the Appendix again; i.e., we 
consider a linear combination of the three foregoing equations: 

d<t> = V G r f o ; + V«'f<i + v'(fh(r - X/dh - X/Gda) 

+ juUdP)2 - da'Wda) (92) 

where v' is a 1 X p row matrix of constants, and p is a constant, all 
to be determined for our convenience. Note that the quantities 
multiplying v' and p. are both zero, by equations (90) and (91). 
Take the second differential of this quantity: 

d2<£ = ( V G - v ' V G - 2 / ida 'W)d 2 a (93) 

Thus the maximum of d<f> occurs when the coefficient of d2a 
vanishes in equation (93). This will be the case if 

dCl = 2ju ~ G ' V ) 

Substituting (94) into (90) we have 

where 

d(3 = — - l w v) 
Ap. 

dg = dt!i - X+'dto 
\H = V G W - ' G V 
\H = V G W - ' G V 

(94) 

(95) 

(96) 

Solving equation (95) for v we obtain 

v = -2p.\H~H§ + (97) 

Substituting (97) and (94) into (91), and solving for p., we obtain 

where 

9 _ r i w — ' i ^ 
"" L(rfP)2 -

= V G W " ' G V 

(98) 

(99) 

(84) 

(85) 

Substituting (97) and (98) into (94) and (89) we obtain the results 
given in Sections 4 of the text in equations (21) and (23), respec-
tively. 

These results have a simple geometric interpretation in the a -
hyperspace. Equations (89) and (90) with dfo = 0 may be 
written 

d<p = VtfxZa = (V<£W- I / j )W ' / 'da (1 0) 

This reduces equation (83) to the expression 

d(j> = Xt'Gda + V dfo (86) 

An exactly similar procedure yields 

dty = X^'Gda + X^'dfo, (87) 

where 
. * 

dt(r = Vi^da = ( V ^ W - ' / ^ W ' / ' d a (101) 

i.e., V G = V 0 is the gradient of 4> in the a-hyperspace, and 
X.^'G = V t is the gradient of »{;. For the moment we will con-
sider i|r to be a single scalar quantity rather than a column 
matrix. If W is the metric in the a-hyperspace then dP is the 
infinitesimal distance from the present nominal point to a neigh-
boring point a + da. We wish to choose da to maximize defy, 
keeping d\p = 0, for a given value of 

dP = |W-' / !da|. 

Hence we must subtract the component of V4>W~' / ! that is 
parallel to V i / ' W - 1 / 2 from V<£W~' / j . Using the Pythagorean 
theorem we have simply then 

m -
[ ( V ^ W - ' / ' K W - ' / ' V ^ ' ) ] 2 

(V^W- 'VIA ' ) 2 

v i A w - ' v ^ ' 
(102) 

= J<J*<t>'Iw I*p<t> 

which gives a geometric interpretation of equation (24). Clearly 
this quantity is positive unless V4>>s parallel to V<p, in which case 
it is zero. 

3 Adjoint Differential Equations for Small Perturbations About 

Given Control Variable Programs. 

For the optimum programming problem stated in Section 6 of 
the text, we wish to determine the changes in <j>, tjr, and U for 
small perturbations, 5a(0, in the control variable programs about 
given nominal control variable programs a*(<), where 0 = 0 is 
the stopping condition. To do this we consider the linear equa-
tions (39) describing small perturbations about the nominal 
path: 

4- (8x) = F(t)8x + G(<)5a (103) 
dt 

To determine the changes in <j>, and fi we introduce the linear 
differential equations adjoint to (103) defined as 

f t " 0,1 
(104) 

where is an n X 1 matrix, Xj, is an n X p matrix, and Xa is an 
n X 1 matrix. If (103) is premultiplied by X' and (104) is pre-
multiplied by (5x)' and the transpose of the second product is 
added to the first product, we have 

d(8x) + = VF5x _ + 

dt dt 

dt 
(X'8x) = X'G&a (105) 
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If we integrate equations (105) from <o to T, the result is Substituting this into equations (110) and (111), we have the re-
lations 

( V S x ) _ r = CT2.'G5adt + (X'Sx),-l0 (106) J to 

If we let 
d<f> = f r ^ n ' G 5 a d « + V i U ) S x « o ) ( 1 1 5 ) 

J to 

v m = ( * ± y . x m _ / m v dtk = f , ! G S a d t + <ii6) 

* \ * * ) t - T ' * \ &X / t = T _ U . „ 1 U 
where the nomenclature is given in equations (51). Next we con-

i »mi i — I* . , ,„_, aider a linear combination of (116) and (113) with (115); i.e., 
M i l ) = I — I (107) « « - m 

d<t> = n'G - v'̂ n'G - n8a'Sf/)Sadl 
J to where the nomenclature is given in equations (47), it is clear that 

= ( V 3 x W ; H = ( V ' 5 x ) , _ r ; = (108) + " v ' W ( « ) S * « o ) + v'difc + » ( d P y (117) 

For small perturbations the value of T will be changed only a Now we take the variation of this relation (117): 
small amount dT, so that /• T 

S(d<£) = I ( W G - v'Xpa'G - 2,u5a'W)5Jad< (118) 
d<t> = 8<p + <t>dT J" 
dt(r = 5i|r + ij[dT (109) where 5x(<o), dijr, and dP are considered constants. The maxi-
dfl = 512 + fidT mum d<t> will occur if the coefficient of S-ot in the integrand of 

(118) vanishes; i.e., 
where the nomenclature is given in equations (48). 

Substituting (107) and (109) into (106) we obtain equations g t t _ \t/-i G ' (3i n — 3. nv) (119) 
(42), (43), and (44) of the text. 2/i 

4 Steepest-Ascent Method in Calculus of Variations Using a Weighted S u b s t i t u t i n g ( 1 1 9 ) b a c k i n t o ( 1 1 6 ) a n d t h e n ( 1 1 3 ) w e c a n s o l v e 
Mean-Square Perturbation of Control Variables to Determine Step Size. f o r t h e c o n s t a n t s V a n d [A*. 

The problem as stated in Section 6 of the text is to choose 8a(t) v _ _2JU| , - y g | -i| (120) 
so as to maximize dtp for given values of dt|r, 5x(io) (usually zero), 
and dP, with dft = 0 where _ 

r T 2M = ± ; ; | (121) 
d<t> = I VGSa dt + V(W®*(« + 4>dT (110) ' v 

J to . 

ft'W ''H> ~| 
I g ' l ^ - ' d f f J 

where 

(122) 

= fto V G S a d i + V( ' » )8x ( « . ) + t[dT (111) d0 = d ^ - V ( f o ) 5 x ( < „ ) 

X T C T 

in'GSadt + V(<o)Sx(fc) + UdT (112) W = J / c V G W >G'XfafU 

(dPy = f T Sa'WSadt (113) 
J to 

We use the analog of the process of Section 2 of the Appendix v> J to 
with only small differences arising from the additional term in /* T 
dT in the foregoing equations. The first step is to eliminate dT I<S>$ = J to ^b'GW ' G ' ^ n d t 
from equation (112): 

T 1 Substituting (120) and (121) into (119) and (115) we obtain the 
dT = — —r~ I Jin'GSadt — . ^n'(/o)5x(/o) (114) results given in Section 6 of the text in equations (50) and (51), 

Q J to 0 respectively. 
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