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A Tale of
Two Sieves

Carl Pomerance

(This paper is dedicated to the memory of my friend and
teacher, Paul Erdos)

I
t is the best of times for the game of fac-
toring large numbers into their prime fac-
tors. In 1970 it was barely possible to fac-
tor “hard” 20-digit numbers. In 1980, in
the heyday of the Brillhart-Morrison con-

tinued fraction factoring algorithm, factoring of
50-digit numbers was becoming commonplace.
In 1990 my own quadratic sieve factoring algo-
rithm had doubled the length of the numbers
that could be factored, the record having 116 dig-
its.

By 1994 the quadratic sieve had factored the
famous 129-digit RSA challenge number that
had been estimated in Martin Gardner’s 1976 Sci-
entific American column to be safe for 40
quadrillion years (though other estimates around
then were more modest). But the quadratic sieve
is no longer the champion. It was replaced by
Pollard’s number field sieve in the spring of
1996, when that method successfully split a
130-digit RSA challenge number in about 15% of
the time the quadratic sieve would have taken.

In this article we shall briefly meet these fac-
torization algorithms—these two sieves—and
some of the many people who helped to de-
velop them.

In the middle part of this century, computa-
tional issues seemed to be out of fashion. In most
books the problem of factoring big numbers

was largely ignored, since it was considered triv-

ial. After all, it was doable in principle, so what

else was there to discuss? A few researchers ig-

nored the fashions of the time and continued to

try to find fast ways to factor. To these few it

was a basic and fundamental problem, one that

should not be shunted to the side.

But times change. In the last few decades we

have seen the advent of accessible and fast com-

puting power, and we have seen the rise of cryp-

tographic systems that base their security on our

supposed inability to factor quickly (and on

other number theoretic problems). Today there

are many people interested in factoring, recog-

nizing it not only as a benchmark for the secu-

rity of cryptographic systems, but for comput-

ing itself. In 1984 the Association for Computing

Machinery presented a plaque to the Institute for

Electrical and Electronics Engineers (IEEE) on

the occasion of the IEEE centennial. It was in-

scribed with the prime factorization of the num-

ber 2251 − 1 that was completed that year with

the quadratic sieve. The president of the ACM

made the following remarks:

About 300 years ago the French

mathematician Mersenne speculated

that 2251 − 1 was a composite, that

is, a factorable number. About 100
years ago it was proved to be fac-

torable, but even 20 years ago the

computational load to factor the

number was considered insur-

mountable. Indeed, using conven-

tional machines and traditional

search algorithms, the search time
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was estimated to be about 1020 years.

The number was factored in Febru-

ary of this year at Sandia on a Cray

computer in 32 hours, a world

record. We’ve come a long way in

computing, and to commemorate

IEEE’s contribution to computing we

have inscribed the five factors of the

Mersenne composite on a plaque.

Happy Birthday, IEEE.

Factoring big numbers is a strange kind of

mathematics that closely resembles the experi-

mental sciences, where nature has the last and

definitive word. If some method to factor n runs

for awhile and ends with the statement “d is a

factor of n”, then this assertion may be easily

checked; that is, the integers have the last and

definitive word. One can thus get by quite nicely

without proving a theorem that a method works

in general. But, as with the experimental sci-

ences, both rigorous and heuristic analyses can

be valuable in understanding the subject and

moving it forward. And, as with the experimen-

tal sciences, there is sometimes a tension be-

tween pure and applied practitioners. It is held

by some that the theoretical study of factoring

is a freeloader at the table (or as Hendrik Lenstra

once colorfully put it, paraphrasing Siegel, “a pig

in the rose garden”), enjoying undeserved at-

tention by vapidly giving various algorithms la-

bels, be they “polynomial”, “exponential”, “ran-

dom”, etc., and offering little or nothing in return

to those hard workers who would seriously com-

pute. There is an element of truth to this view.

But as we shall see, theory played a significant

role in the development of the title’s two sieves.

A Contest Problem

But let us begin at the beginning, at least my be-

ginning. When I give talks on factoring, I often

repeat an incident that happened to me long

ago in high school. I was involved in a math con-

test, and one of the problems was to factor the

number 8051. A time limit of five minutes was

given. It is not that we were not allowed to use

pocket calculators; they did not exist in 1960,

around when this event occurred! Well, I was

fairly good at arithmetic, and I was sure I could

trial divide up to the square root of 8051 (about

90) in the time allowed. But on any test, espe-

cially a contest, many students try to get into the

mind of the person who made it up. Surely they

would not give a problem where the only rea-

sonable approach was to try possible divisors

frantically until one was found. There must be

a clever alternate route to the answer. So I spent

a couple of minutes looking for the clever way,

but grew worried that I was wasting too much

time. I then belatedly started trial division, but

I had wasted too much time, and I missed the
problem.

So can you find the clever way? If you wish
to think about this for a moment, delay reading
the next paragraph.

Fermat and Kraitchik

The trick is to write 8051 as 8100− 49, which
is 902 − 72, so we may use algebra, namely, fac-
toring a difference of squares, to factor 8051. It
is 83× 97 .

Does this always work? In fact, every odd
composite can be factored as a difference of
squares: just use the identity ab =

(

1
2 (a + b)

)2

−
(

1
2 (a− b)

)2
. Trying to find a pair of squares

which work is, in fact, a factorization method of
Fermat. Just like trial division, which has some
very easy cases (such as when there is a small
prime factor), so too does the difference-of-
squares method have easy cases. For example,
if n = ab where a and b are very close to 

√
n ,

as in the case of n = 8051, it is easy to find the
two squares. But in its worst cases, the differ-
ence-of-squares method can be far worse than
trial division. It is worse in another way too.
With trial division, most numbers fall into the
easy case; namely, most numbers have a small
factor. But with the difference-of-squares
method, only a small fraction of numbers have
a divisor near their square root, so the method
works well on only a small fraction of possible
inputs. (Though trial division allows one to begin
a factorization for most inputs, finishing with a
complete factorization is usually far more dif-
ficult. Most numbers resist this, even when a
combination of trial division and difference-of-
squares is used.)

In the 1920s Maurice Kraitchik came up with
an interesting enhancement of Fermat’s differ-
ence-of-squares technique, and it is this en-
hancement that is at the basis of most modern
factoring algorithms. (The idea had roots in the
work of Gauss and Seelhoff, but it was Kraitchik
who brought it out of the shadows, introducing
it to a new generation in a new century. For
more on the early history of factoring, see [23].)
Instead of trying to find integers u and v with
u2 − v2 equal to n, Kraitchik reasoned that it
might suffice to find u and v with u2 − v2 equal
to a multiple of n, that is, u2 ≡ v2 mod n. Such
a congruence can have uninteresting solutions,
those where u ≡ ±v mod n, and interesting so-
lutions, where u 6≡ ±v mod n. In fact, if n is odd
and divisible by at least two different primes,
then at least half of the solutions to
u2 ≡ v2 mod n, with uv coprime to n, are of the
interesting variety. And for an interesting solu-
tion u, v , the greatest common factor of u− v
and n, denoted (u− v, n), must be a nontrivial
factor of n .  Indeed, n divides u2 − v2 =
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(u− v)(u + v) but divides neither factor. So n
must be somehow split between u− v and u + v.

As an aside, it should be remarked that find-
ing the greatest common divisor (a, b) of two
given numbers a and b is a very easy task. If
0 < a ≤ b and if a divides b, then (a, b) = a. If
a does not divide b, with b leaving a remainder
r when divided by a, then (a, b) = (a, r ). This
neat idea of replacing a larger problem with a
smaller one is over two thousand years old and
is due to Euclid. It is very fast: it takes about as
much time for a computer to find the greatest
common divisor of a and b as it would take to
multiply them together.

Let us see how Kraitchik might have factored
n = 2041 .  The first square above n is
462 = 2116 . Consider the sequence of numbers
Q(x) = x2 − n for x = 46, 47, . . .. We get 

75, 168, 263, 360, 459, 560, . . . .

So far no squares have appeared, so Fermat
might still be searching. But Kraitchik has an-
other option: namely, he tries to find several
numbers x with the product of the corre-
sponding numbers Q(x) equal to a square. For
if Q(x1) · · ·Q(xk) = v2 and x1 · · ·xk = u, then 

u2 = x2
1 · · ·x2

k ≡ (x2
1 − n) · · · (x2

k − n)

= Q(x1) · · ·Q(xk) = v2 mod n;

that is, we have found a solution to
u2 ≡ v2 mod n .  But how to find the set
x1, . . . , xk? Kraitchik notices that some of the
numbers Q(x) factor very easily: 

75 = 3× 52, 168 = 23 × 3× 7,

360 = 23 × 32 × 5, 560 = 24 × 5× 7.

From these factorizations he can tell that the
product of these four numbers is
210 × 34 × 54 × 72 ,  a square! Thus he has
u2 ≡ v2 mod n, where 

u = 46 · 47 · 49 · 51 ≡ 311 mod 2041,

v = 25 · 32 · 52 · 7 ≡ 1416 mod 2041.

He is now nearly done, since
311 6≡ ±1416 mod 2041 . Using Euclid’s algo-
rithm to compute the greatest common factor
(1416− 311,2041) , he finds that this is 13, and
so 2041 = 13× 157.

Continued Fractions

The essence of Kraitchik’s method is to “play”
with the sequence x2 − n as x runs through in-
tegers near 

√
n to find a subsequence with prod-

uct a square. If the square root of this square is
v and the product of the corresponding x val-
ues is u, then u2 ≡ v2 mod n, and there is now
a hope that this congruence is “interesting”,
namely, that u 6≡ ±v mod n. In 1931 D. H.

Lehmer and R. E. Powers suggested replacing

Kraitchik’s function Q(x) = x2 − n with another

that is derived from the continued-fraction ex-

pansion of 
√
n .

If ai/bi is the i-th continued fraction con-

vergent to 
√
n ,  let Qi = a2

i − b2
i n .  Then

Qi ≡ a2
i mod n. Thus, instead of playing with the

numbers Q(x) , we may play with the numbers

Qi, since in both cases they are congruent mod-

ulo n to known squares. Although continued

fractions can be ornery beasts as far as compu-

tation goes, the case for quadratic irrationals is

quite pleasant. In fact, there is a simple iterative

procedure (see [16]) going back to Gauss and per-

haps earlier for computing what is needed here,

namely, the sequence of integers Qi and the

residues ai mod n.

But why mess up a perfectly simple quadratic

polynomial with something as exotic as contin-

ued fractions? It is because of the inequality

|Qi| < 2
√
n. The numbers Qi are smaller in ab-

solute value than the numbers Q(x). (As x moves

away from 
√
n , the numbers Q(x) grow ap-

proximately linearly, with a slope of 2
√
n.) If

one wishes to “play” with numbers to find some

of them with product a square, it is presumably

easier to do this with smaller numbers than with

larger numbers. So the continued fraction of

Lehmer and Powers has an apparent advantage

over the quadratic polynomial of Kraitchik.

How to “Play” with Numbers

It is certainly odd to have an instruction in an

algorithm asking you to play with some numbers

to find a subset with product a square. I am re-

minded of the cartoon with two white-coated sci-

entists standing at a blackboard filled with ar-

cane notation, and one points to a particularly

delicate juncture and says to the other that at

this point a miracle occurs. Is it a miracle that

we were able to find the numbers 75, 168, 360,

and 560 in Kraitchik’s sequence with product a

square? Why should we expect to find such a sub-

sequence, and, if it exists, how can we find it ef-

ficiently?

A systematic strategy for finding a subse-

quence of a given sequence with product a square

was found by John Brillhart and Michael Morri-

son, and, surprisingly, it is at heart only linear

algebra (see [16]). Every positive integer m has

an exponent vector v(m) that is based on the

prime factorization of m. Let pi denote the i-th

prime, and say m =
∏

p
vi
i . (The product is over

all primes, but only finitely many of the expo-

nents vi are nonzero.) Then v(m) is the vector

(v1, v2, . . . ) . For example, leaving off the infinite

string of zeros after the fourth place, we have
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v(75) = (0,1,2,0),

v(168) = (3,1,0,1),

v(360) = (3,2,1,0),

v(560) = (4,0,1,1).

For our purposes the exponent vectors give too

much information. We are interested only in

squares, and since a positive integer m is a

square if and only if every entry of v(m) is even,

we should be reducing exponents modulo 2.

Since v takes products to sums, we are looking

for numbers such that the sum of their exponent

vectors is the zero vector mod 2. The mod 2 re-

ductions of the above exponent vectors are 

v(75) ≡ (0,1,0,0) mod 2,

v(168) ≡ (1,1,0,1) mod 2,

v(360) ≡ (1,0,1,0) mod 2,

v(560) ≡ (0,0,1,1) mod 2.

Note that their sum is the zero vector! Thus the

product of 75, 168, 360, and 560 is a square.

To systematize this procedure, Brillhart and

Morrison suggest that we choose some number

B and look only at those numbers in the se-

quence that completely factor over the first B

primes. So in the case above, we have B = 4 . As

soon as B + 1 such numbers have been assem-

bled, we have B + 1 vectors in the B-dimensional

vector space FB2 . By linear algebra they must be

linearly dependent. But what is a linear depen-

dence relation over the field F2? Since the only

scalars are 0 and 1, a linear dependence relation

is simply a subset sum equaling the 0-vector. And

we have many algorithms from linear algebra

that can help us find this dependency.

Note that we were a little lucky here, since we

were able to find the dependency with just four

vectors rather than the five vectors needed in the

worst case.

Brillhart and Morrison call the primes

p1, p2, . . . , pB the “factor base”. (To be more pre-

cise, they discard those primes pj for which n

is not congruent to a square, since such primes

will never divide a number Qi in the continued-

fraction method nor a number Q(x) in Kraitchik’s

method.) How is B to be chosen? If it is chosen

small, then we do not need to assemble too

many numbers before we can stop. But if it is cho-

sen too small, the likelihood of finding a num-

ber in the sequence that completely factors over

the first B primes will be so minuscule that it

will be difficult to find even one number. Thus

somewhere there is a happy balance, and with

factoring 2041 via Kraitchik’s method, the happy

balance turned out to be B = 4 .

Some of the auxiliary numbers may be nega-

tive. How do we handle their exponent vectors?

Clearly we cannot ignore the sign, since squares

are not negative. However, we can put an extra
coordinate in each exponent vector, one that is
0 for positive numbers and 1 for negative num-
bers. (It is as if we are including the “prime” −1
in the factor base.) So allowing the auxiliary
numbers to be negative just increases the di-
mension of the problem by 1.

For example, let us consider again the num-
ber 2041 and try to factor it via Kraitchik’s poly-
nomial, but now allowing negative values. So
with Q(x) = x2 − 2041 and the factor base 2, 3,
and 5, we have 

Q(43) = −192 = −26 · 3 ↔ (1,0,1,0)

Q(44) = −105

Q(45) = −16 = −24 ↔ (1,0,0,0)

Q(46) = 75 = 3 · 52 ↔ (0,0,1,0),

where the first coordinates correspond to the ex-
ponent on −1. So, using the smaller factor base
of 2, 3, and 5 but allowing also negatives, we are
especially lucky, since the three vectors assem-
bled so far are dependent. This leads to the con-
gruence (43 · 45 · 46)2 ≡ (−192)(−16) (75) mod
2041, or 12472 ≡ 4802 mod 2041. This again
gives us the divisor 13 of 2041, since
(1247− 480,2041) = 13.

Does the final greatest common divisor step
always lead to a nontrivial factorization? No it
does not. The reader is invited to try still another
assemblage of a square in connection with 2041.
This one involves Q(x) for x = 41, 45, and 49
and gives rise to the congruence
6012 ≡ 14402 mod 2041. In our earlier termi-
nology, this congruence is uninteresting, since
601 ≡ −1440 mod 2041. And sure enough, the
greatest common divisor (601− 1440,2041) is
the quite uninteresting divisor 1.

Smooth Numbers and the Stirrings of
Complexity Theory

With the advent of the RSA public key cryp-
tosystem in the late 1970s, it became particularly
important to try to predict just how hard fac-
toring is. Not only should we know the state of
the art at present, we would like to predict just
what it would take to factor larger numbers be-
yond what is feasible now. In particular, it seems
empirically that dollar for dollar computers dou-
ble their speed and capacity every one and a half
to two years. Assuming this and no new factor-
ing algorithms, what will be the state of the art
in ten years?

It is to this type of question that complexity
theory is well suited. So how then might one an-
alyze factoring via Kraitchik’s polynomial or the
Lehmer-Powers continued fraction? Richard
Schroeppel, in unpublished correspondence in
the late 1970s, suggested a way. Essentially, he
begins by thinking of the numbers Qi in the con-
tinued-fraction method or the numbers Q(x) in
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Kraitchik’s method as “random”. If you are pre-
sented with a stream of truly random numbers
below a particular bound X, how long should you
expect to wait before you find some subset with
product a square?

Call a number Y-smooth if it has no prime fac-
tor exceeding Y. (Thus a number which com-
pletely factors over the primes up to pB is pB-
smooth.) What is the probability that a random
positive integer up to X is Y-smooth? It is
ψ(X,Y )/[X] ≈ ψ(X,Y )/X, where ψ(X,Y ) is the
number of Y-smooth numbers in the interval
[1, X]. Thus the expected number of random
numbers that must be examined to find just
one that is Y-smooth is the reciprocal of this
probability, namely, X/ψ(X,Y ). But we must
find about π (Y ) such Y-smooth numbers, where
π (Y ) denotes the number of primes up to Y. So
the expected number of random numbers that
must be examined is about π (Y )X/ψ(X,Y ). And
how much work does it take to examine a num-
ber to see if it is Y-smooth? If one uses trial di-
vision for this task, it takes about π (Y ) steps.
So the expected number of steps is
π (Y )2X/ψ(X,Y ).

It is now a job for analytic number theory to
choose Y as a function of X so as to minimize
the expression π (Y )2X/ψ(X,Y ). In fact, in the
late 1970s the tools did not quite exist to make
this estimation accurately.

This was remedied in a paper in 1983 (see [4]),
though preprints of this paper were around for
several years before then. So what is the mini-
mum? It occurs when Y is about
exp(

1
2

√

logX log logX) and the minimum value
is about exp(2

√

logX log logX). But what are “X”
and “Y” anyway?1 The number X is an estimate
for the typical auxiliary number the algorithm
produces. In the continued-fraction method, X
can be taken as 2

√
n. With Kraitchik’s polyno-

mial, X is a little larger: it is n1/2+ε. And the num-
ber Y is an estimate for pB, the largest prime in
the factor base.

Thus factoring n, either via the Lehmer-Pow-
ers continued fraction or via the Kraitchik poly-
nomial, should take about exp(

√

2 logn log logn)
steps. This is not a theorem; it is a conjecture.
The conjecture is supported by the above heuris-
tic argument which assumes that the auxiliary
numbers generated by the continued fraction of√
n or by Kraitchik’s quadratic polynomial are

“random” as far as the property of being
Y-smooth goes. This has not been proved. In ad-
dition, getting many auxiliary numbers that are
Y-smooth may not be sufficient for factoring n,
since each time we use linear algebra over F2 to

assemble the congruent squares we may be very
unlucky and only come up with uninteresting so-
lutions which do not help in the factorization.
Again assuming randomness, we do not expect
inordinately long strings of bad luck, and this
heuristic again supports the conjecture.

As mentioned, this complexity argument was
first made by Richard Schroeppel in unpublished
work in the late 1970s. (He assumed the result
mentioned above from [4], even though at that
time it was not a theorem or even really a con-
jecture.) Armed with the tools to study com-
plexity, he used them during this time to come
up with a new method that came to be known
as the linear sieve. It was the forerunner of the
quadratic sieve and also its inspiration.

Using Complexity to Come Up With a
Better Algorithm: The Quadratic Sieve

The above complexity sketch shows a place
where we might gain some improvement. It is the
time we are taking to recognize auxiliary num-
bers that factor completely with the primes up
to Y = pB, that is, the Y-smooth numbers. In the
argument we assumed this is about π (Y ) steps,
where π (Y ) is the number of primes up to Y. The
probability that a number is Y-smooth is, ac-
cording to the notation above, ψ(X,Y )/[X]. As
you might expect and as is easily checked in
practice, when Y is a reasonable size and X is
very large, this probability is very, very small. So
one after the other, the auxiliary numbers pop
up, and we have to invest all this time in each
one, only to find out almost always that the
number is not Y-smooth and is thus a number
that we will discard.

It occurred to me early in 1981 that one might
use something akin to the sieve of Eratosthenes
to quickly recognize the smooth values of
Kraitchik’s quadratic polynomial Q(x) = x2 − n.
The sieve of Eratosthenes is the well-known de-
vice for finding all the primes in an initial interval
of the natural numbers. One circles the first
prime 2 and then crosses off every second num-
ber, namely, 4, 6, 8, etc. The next unmarked
number is 3. It is circled, and we then cross off
every third number. And so on. After reaching
the square root of the upper limit of the sieve,
one can stop the procedure and circle every re-
maining unmarked number. The circled numbers
are the primes; the crossed-off numbers the
composites.

It should be noted that the sieve of Eratos-
thenes does more than find primes. Some
crossed-off numbers are crossed off many times.
For example, 30 is crossed off three times, as is
42, since these numbers have three prime fac-
tors. Thus we can quickly scan the array look-
ing for numbers that are crossed off a lot and
so quickly find the numbers which have many

1Actually, this is a question that has perplexed many

a student in elementary algebra, not to mention many

a philosopher of mathematics.
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prime factors. And clearly there is a correlation

between having many prime factors and having

all small prime factors.

But we can do better than have a correlation.

By dividing by the prime, instead of crossing off,

numbers like 30 and 42 get transformed to the

number 1 at the end of the sieve, since they are

completely factored by the primes used in the

sieve. So instead of sieving with the primes up

to the square root of the upper bound of the

sieve, say we only sieve with the primes up to

Y. And instead of crossing a number off, we di-

vide it by the prime. At the end of the sieve any

number that has been changed to the number 1

is Y-smooth. But not every Y-smooth is caught

in this sieve. For example, 60 gets divided by its

prime factors and is changed to the number 2.

The problem is higher powers of the primes up

to Y. We can rectify this by also sieving by these

higher powers and dividing hits by the under-

lying prime. Then the residual 1’s at the end

correspond exactly to the Y-smooth numbers in

the interval.

The time for doing this is unbelievably fast

compared with trial dividing each candidate

number to see if it is Y-smooth. If the length of

the interval is N, the number of steps is only

about N log logY, or about log logY steps on

average per candidate.

So we can quickly recognize Y-smooth num-

bers in an initial interval. But can we use this idea

to recognize Y-smooth values of the quadratic

polynomial Q(x) = x2 − n? What it takes for a

sieve to work is that for each modulus m in the

sieve, the multiples of the number m appear in

regular places in the array. So take a prime p,

for example, and ask, For which values of x do

we have Q(x) divisible by p? This is not a diffi-

cult problem. If n (the number being factored)

is a nonzero square modulo p, then there are two

residue classes a and b mod p such that

Q(x) ≡ 0 mod p if and only if x ≡ a or b mod

p. If n is not a square modulo p, then Q(x) is

never divisible by p and no further computations

with p need be done.

So essentially the same idea can be used, and

we can recognize the Y-smooth values of Q(x)

in about log logY steps per candidate value.

What does the complexity argument give us?

The time to factor n is now about

exp(
√

logn log logn) ; namely, the factor 
√

2 in

the exponent is missing. Is this a big deal? You

bet. This lower complexity and other friendly fea-

tures of the method allowed a twofold increase

in the length of the numbers that could be fac-

tored (compared with the continued-fraction

method discussed above). And so was born the

quadratic sieve method as a complexity argu-

ment and with no numerical experiments.

Implementations and Enhancements

In fact, I was very lucky that the quadratic sieve

turned out to be a competitive algorithm. More

often than not, when one invents algorithms

solely via complexity arguments and thought

experiments, the result is likely to be too awk-

ward to be a competitive method. In addition,

even if the basic idea is sound, there well could

be important enhancements waiting to be dis-

covered by the people who actually try the thing

out. This in fact happened with the quadratic

sieve.

The first person to try out the quadratic sieve

method on a big number was Joseph Gerver (see

[9]). Using the task as an opportunity to learn pro-

gramming, he successfully factored a 47-digit num-

ber from the Cunningham project. This project,

begun early in this century by Lt.-Col. Allan J. Cun-

ningham and H. J. Woodall, consists of factor-

ing into primes the numbers bn ± 1 for b up to

12 (and not a power) and n up to high numbers

(see [3]). Gerver’s number was a factor of

3225 − 1.

Actually I had a hard time getting people to

try out the quadratic sieve. Many Cunningham

project factorers seemed satisfied with the con-

tinued-fraction method, and they thought that

the larger values of Kraitchik’s polynomial Q(x) ,

compared with the numbers Qi in the contin-

ued-fraction method, was too great a handicap

for the fledgling quadratic sieve method. But at

a conference in Winnipeg in the fall of 1982, I

convinced Gus Simmons and Tony Warnock of

Sandia Laboratories to give it a try on their Cray

computer.

Jim Davis and Diane Holdridge were assigned

the task of coding up the quadratic sieve on the

Sandia Cray. Not only did they succeed, but they

quickly began setting records. And Davis found

an important enhancement that mitigated the

handicap mentioned above. He found a way of

switching to other quadratic polynomials after

values of the first one, Q(x) = x2 − n, grew un-

comfortably large. Though this idea did not sub-

stantially change the complexity estimate, it

made the method much more practical. Their

success not only made the cover of the Math-

ematical Intelligencer (the volume 6, number 3

cover in 1984 had on it a Cray computer and the

factorization of the number consisting of 71

ones), but there was even a short article in Time

magazine, complete with a photo of Simmons.

It was ironic that shortly before the Sandia

team began this project, another Sandia team had

designed and manufactured an RSA chip for

public key cryptography, whose security was

based on our inability to factor numbers of

about 100 digits. Clearly this was not safe

enough, and the chip had to be scrapped.
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Around this time Peter Montgomery inde-
pendently came up with another, slightly better
way of changing polynomials, and we now use
his method rather than that of Davis.

One great advantage of the quadratic sieve
method over the continued-fraction method is
that with the quadratic sieve it is especially easy
to distribute the task of factoring to many com-
puters. For example, using multiple polynomi-
als, each computer can be given its own set of
quadratic polynomials to sieve. At first, the great-
est successes of the quadratic sieve came from
supercomputers, such as the Cray XMP at San-
dia Laboratories. But with the proliferation of
low-cost workstations and PCs and the natural
way that the quadratic sieve can be distributed,
the records passed on to those who organized
distributed attacks on target numbers.

Robert Silverman was the first to factor a
number using many computers. Later, Red Al-
ford and I used over 100 very primitive, non-
networked PCs to factor a couple of 100-digit
numbers (see [2]). But we did not set a record,
because while we were tooling up, Arjen Lenstra
and Mark Manasse [12] took the ultimate step in
distributing the problem. They put the quadratic
sieve on the Internet, soliciting computer time
from people all over the world. It was via such
a shared effort that the 129-digit RSA challenge
number was eventually factored in 1994. This
project, led by Derek Atkins, Michael Graff, Paul
Leyland, and Lenstra, took about eight months
of real time and involved over 1017 elementary
steps.

The quadratic sieve is ultimately a very sim-
ple algorithm, and this is one of its strengths.
Due to its simplicity one might think that it
could be possible to design a special-purpose
computer solely dedicated to factoring big num-
bers. Jeff Smith and Sam Wagstaff at the Uni-
versity of Georgia had built a special-purpose
processor to implement the continued-fraction
method. Dubbed the “Georgia Cracker”, it had
some limited success but was overshadowed by
quadratic sieve factorizations on conventional
computers. Smith, Randy Tuler, and I (see [21])
thought we might build a special-purpose qua-
dratic sieve processor. “Quasimodo”, for Qua-
dratic Sieve Motor, was built but never func-
tioned properly. The point later became moot
due to the exponential spread of low-cost, high-
quality computers.

The Dawn of the Number Field Sieve

Taking his inspiration from a discrete logarithm
algorithm of Don Coppersmith, Andrew Odlyzko,
and Richard Schroeppel [6] that used quadratic
number fields, John Pollard in 1988 circulated
a letter to several people outlining an idea of his
for factoring certain big numbers via algebraic

number fields. His original idea was not for any
large composite, but for certain “pretty” com-
posites that had the property that they were
close to powers and had certain other nice prop-
erties as well. He illustrated the idea with a fac-
torization of the number 227

+ 1, the seventh Fer-
mat number. It is interesting that this number
was the first major success of the continued-frac-
tion factoring method, almost twenty years ear-
lier.

I must admit that at first I was not too keen
on Pollard’s method, since it seemed to be ap-
plicable to only a few numbers. However, some
people were taking it seriously, one being Hen-
drik Lenstra. He improved some details in the al-
gorithm and, along with his brother Arjen and
Mark Manasse, set about using the method to fac-
tor several large numbers from the Cunning-
ham project. After a few successes (most notably
a 138-digit number) and after Brian LaMacchia
and Andrew Odlyzko had made some inroads in
dealing with the large, sparse matrices that come
up in the method, the Lenstras and Manasse set
their eyes on a real prize, 229

+ 1, the ninth Fer-
mat number.2 Clearly it was beyond the range of
the quadratic sieve. Hendrik Lenstra’s own el-
liptic curve method, which he discovered early

2This number had already been suggested in Pollard’s

original note as a worthy goal. It was known to be com-

posite—in fact, we already knew a 7-digit prime factor—

but the remaining 148-digit cofactor was still compos-

ite, with no factor known.

Modern model of the Lehmer Bicycle Chain Sieve constructed
by Robert Canepa and currently in storage at the Computer
Museum, 300 Congress Street, Boston, MA 02210.
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in 1985 and which is especially good at splitting
numbers which have a relatively small prime
factor (say, “only” 30 or so digits) had so far not
been of help in factoring it. The Lenstras and
Manasse succeeded in getting the prime factor-
ization of 229

+ 1 in the spring of 1990. This
sensational achievement announced to the world
that Pollard’s number field sieve had arrived.

But what of general numbers? In the summer
of 1989 I was to give a talk at the meeting of the
Canadian Number Theory Association in Van-
couver. It was to be a survey talk on factoring,
and I figured it would be a good idea to mention
Pollard’s new method. On the plane on the way
to the meeting I did a complexity analysis of the
method as to how it would work for general
numbers, assuming myriad technical difficul-
ties did not exist and that it was possible to run
it for general numbers. I was astounded. The
complexity for this algorithm-that-did-not-yet-
exist was of the shape exp(c(logn)1/3

(log logn)2/3) . The key difference over the com-
plexity of the quadratic sieve was that the most
important quantity in the exponent, the power
of logn, had its exponent reduced from 1/2 to
1/3. If reducing the constant in the exponent had
such a profound impact in passing from the
continued-fraction method to the quadratic sieve,
think what reducing the exponent in the expo-
nent might accomplish. Clearly this method de-
served some serious thought!

I do not wish to give the impression that with
this complexity analysis I had single-handedly
found a way to apply the number field sieve to
general composites. Far from it. I merely had a
shrouded glimpse of exciting possibilities for the
future. That these possibilities were ever realized
was mostly due to Joe Buhler, Hendrik Lenstra,
and others. In addition, some months earlier
Lenstra had done a complexity analysis for Pol-
lard’s method applied to special numbers, and
he too arrived at the expression exp(c(logn)1/3

(log logn)2/3) . My own analysis was based on
some optimistic algebraic assumptions and on
arguments about what might be expected to
hold, via averaging arguments, for a general
number.

The starting point of Pollard’s method to fac-
tor n is to come up with a monic polynomial f (x)
over the integers that is irreducible and an in-
teger m such that f (m) ≡ 0 mod n. The polyno-
mial should have “moderate” degree d, meaning
that if n has between 100 and 200 digits, then
d should be 5 or 6. For a number such as the
ninth Fermat number, n = 229

+ 1 , it is easy to
come up with such a polynomial. Note that
8n = 2515 + 8 .  So let f (x) = x5 + 8 ,  and let
m = 2103.

Of what possible use could such a polynomial
be? Let α be a complex root of f (x), and consider

the ring Z[α] consisting of all polynomial ex-
pressions in α with integer coefficients. Since
f (α) = 0 and f (m) ≡ 0 mod n, by substituting
the residue m mod n for each occurrence of α
we have a natural map φ from Z[α] to Z/(nZ).
Our conditions on f, α, and m ensure that φ is
well defined. And not only this, φ is a ring ho-
momorphism.

Suppose now that S is a finite set of coprime
integer pairs 〈a, b〉 with two properties. The
first is that the product of the algebraic integers
a−αb for all pairs 〈a, b〉 in S is a square in
Z[α], say, γ2. The second property for S is that
the product of all the numbers a−mb for pairs
〈a, b〉 in S is a square in Z , say, v2. Since γmay
be written as a polynomial expression in α, we
may replace each occurrence of α with the in-
teger m, coming up with an integer u with
φ(γ) ≡ u mod n. Then 

u2 ≡ φ(γ)2 = φ(γ2) = φ





∏

〈a,b〉∈S

(a−αb)





=
∏

〈a,b〉∈S

φ(a−αb)

≡
∏

〈a,b〉∈S

(a−mb) = v2 mod n.

And we know what to do with u and v . Just as
Kraitchik showed us seventy years ago, we hope
that we have an interesting congruence, that is,
u 6≡ ±v mod n, and if so, we take the greatest
common divisor (u− v, n) to get a nontrivial
factor of n.

Where is the set S of pairs 〈a, b〉 supposed
to come from? For at least the second property
S is supposed to have, namely, that the prod-
uct of the numbers a−mb is a square, it is
clear we might again use exponent vectors and
a sieve. Here there are two variables a and b in-
stead of just the one variable in Q(x) in the qua-
dratic sieve. So we view this as a parametrized
family of linear polynomials. We can fix b and
let a run over an interval, then change to the next
b and repeat.

But S is to have a second property too: for
the same pairs 〈a, b〉 , the product of a−αb is
a square in Z[α]. It was Pollard’s thought that if
we were in the nice situation that Z[α] is the full
ring of algebraic integers in Q(α), if the ring is
a unique factorization domain, and if we know
a basis for the units, then we could equally well
create exponent vectors for the algebraic inte-
gers a−αb and essentially repeat the same al-
gorithm. To arrange for both properties of S to
hold simultaneously, well, this would just involve
longer exponent vectors having coordinates for
all the small prime numbers, for the sign of
a−αb, for all the “small” primes in Z[α], and
for each unit in the unit basis.

But how are we supposed to do this for a
general number n? In fact, how do we even
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achieve the first step of finding the polynomial
f (x) and the integer m with f (m) ≡ 0 mod n?
And if we could find it, why should we expect
that Z[α] has all of the nice properties to make
Pollard’s plan work?

The Number Field Sieve Evolves

There is at the least a very simple device to get
started, that is, to find f (x) and m. The trick is
to find f (x) last. First, one decides on the degree
d of f. Next, one lets m be the integer part of
n1/d . Now write n in the base m, so that
n =md + cd−1m

d−1 + · · · + c0 , where the base
m “digits” ci satisfy 0 ≤ ci < m . (If n > (2d)d,
then the leading “digit” cd is 1.) The polynomial
f (x) is now staring us in the face; it is
xd + cd−1x

d−1 + · · · + c0. So we have a monic
polynomial f (x), but is it irreducible?

There are many strategies for factoring prim-
itive polynomials over Z into irreducible factors.
In fact, we have the celebrated polynomial-time
algorithm of Arjen Lenstra, Hendrik Lenstra,
and Lászlo Lovász for factoring primitive poly-
nomials in Z[x] (the running time is bounded by
a fixed power of the sum of the degree and the
number of digits in the coefficients). So suppose
we are unlucky and the above procedure leads
to a reducible polynomial f (x) ,  say,
f (x) = g(x)h(x). Then n = f (m) = g(m)h(m) , and
from a result of John Brillhart, Michael Filaseta,
and Andrew Odlyzko this factorization of n is
nontrivial. But our goal is to find a nontrivial fac-
torization of n, so this is hardly unlucky at all!
Since almost all polynomials are irreducible, it
is much more likely that the construction will
let us get started with the number field sieve,
and we will not be able to factor n immediately.

There was still the main problem of how one
might get around the fact that there is no rea-
son to expect the ring Z[α] to have any nice prop-
erties at all. By 1990 Joe Buhler, Hendrik Lenstra,
and I had worked out the remaining difficulties
and, incorporating a very practical idea of Len
Adleman [1], which simplified some of our
constructions,3 published a description of the
general number field sieve in [11].

Here is a brief summary of what we did. The
norm N(a−αb) (over Q ) of a−αb is easily
worked out to be bdf (a/b). This is the homog-
enized version of f. We define a−αb to be
Y-smooth if N(a−αb) is Y-smooth. Since the
norm is multiplicative, it follows that if the prod-

uct of various algebraic integers a−αb is a

square of an algebraic integer, then so too is the

corresponding product of norms a square of an

integer. Note too that we know how to find a set

of pairs 〈a, b〉 with the product of N(a−αb) a

square. This could be done by using a sieve to

discover Y-smooth values of N(a−αb) and then

combine them via exponent vector algebra over

F2.

But having the product of the numbers

N(a−αb) be a square, while a necessary con-

dition for the product of the a−αb to be a

square, is far from sufficient. The principal rea-

son for this is that the norm map takes various

prime ideals to the same thing in Z , and so the

norm can easily be a square without the argu-

ment being a square. For example, the two de-

gree one primes in Z[i] , 2 + i and 2− i, have

norm 5. Their product is 5, which has norm

25 = 52 , but (2 + i)(2− i) = 5 is squarefree. (Note

that if we are working in the ring of all algebraic

integers in Q(α), then all of the prime ideal fac-

tors of a−αb for coprime integers a and b are

degree one; namely, their norms are rational

primes.) For each prime p let Rp be the set of

solutions to f (x) ≡ 0 mod p . When we come

across a pair 〈a, b〉 with p dividing N(a−αb),

then some prime ideal above p divides a−αb.

And we can tell which one, since a/b will be con-

gruent modulo p to one of the members of Rp ,

and this will serve to distinguish the various

prime ideals above p. Thus we can arrange for

our exponent vectors to have #Rp coordinates

for each prime p and so keep track of the prime

ideal factorization of a−αb. Note that #Rp ≤ d,

the degree of f (x).

So we have gotten over the principal hurdle,

but there are still many obstructions. We are

supposed to be working in the ring Z[α], and this

may not be the full ring of algebraic integers. In

fact, this ring may not be a Dedekind domain,

so we may not even have factorization into prime

ideals. And even if we have factorization into

prime ideals, the above paragraph merely as-

sures us that the principal ideal generated by the

product of the algebraic integers a−αb is the

square of some ideal, not necessarily the square

of a principal ideal. And even if it is the square

of a principal ideal, it may not be a square of an

algebraic integer, because of units. (For example,

the ideal generated by −9 is the square of an

ideal in Z , but −9 is not a square.) And even if

the product of the numbers a−αb is a square

3Though Adleman’s ideas did not change our theoret-

ical complexity estimates for the running time, the sim-

plicities they introduced removed most remaining ob-

stacles to making the method competitive in practice

with the quadratic sieve. It is interesting that Adleman

himself, like most others around 1990, continued to

think of the general number field sieve as purely a

speculative method.

4It is a theorem that if f is a monic irreducible poly-

nomial over Z with a complex root α and if γ is in the

ring of integers of Q(α), then f ′(α)γ is in Z[α]. So if

γ2 is a square in the ring of integers of Q(α), then

f ′(α)2γ2 is a square in Z[α].
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of an algebraic integer, how do we know it is the
square of an element of Z[α]?

The last obstruction is rather easily handled
by using f ′(α)2 as a multiplier,4 but the other ob-
structions seem difficult. However, there is a
simple and ingenious idea of Len Adleman [1]
that in one fell swoop overcomes them all. The
point is that even though we are being faced with
some nasty obstructions, they form, modulo
squares, an F2-vector space of fairly small di-
mension. So the first thought just might be to
ignore the problem. But the dimension is not that
small. Adleman suggested randomly choosing
some quadratic characters and using their val-
ues at the numbers a−αb to augment the ex-
ponent vectors. (There is one fixed choice of the
random quadratic characters made at the start.)
So we are arranging for a product of numbers
a−αb to not only be a square up to the “ob-
struction space” but also highly likely actually
to be a square. For example, consider the above
problem with −9 not being a square. If some-
how we cannot “see” the problem with the sign
but it sure looks like a square to us because we
know that for each prime p the exponent on p
in the prime factorization of −9 is even, we
might still detect the problem. Here is how: Con-
sider a quadratic character evaluated at −9, in
this case the Legendre symbol (−9/p) , which is
1 if −9 is a square mod p and −1 if −9 is not
a square mod p. Say we try this with p = 7 . It is
easy to compute this symbol, and it turns out
to be −1. So −9 is not a square mod 7, and so
it cannot be a square in Z . If −9 is a square mod
some prime p, however, this does not guaran-
tee it is a square in Z . For example, if we had
tried this with 5 instead of 7, then −9 would still
be looking like a square. Adleman’s idea is to
evaluate smooth values of a−αb at the qua-
dratic characters that were chosen and use the
linear algebra to create an element with two
properties: its (unaugmented) exponent vector
has all even entries, and its value at each char-
acter is 1. This algebraic integer is highly likely,
in a heuristic sense, to be a square. If it is not a
square, we can continue to use linear algebra over
F2 to create another candidate.

To be sure, there are still difficulties. One of
these is the “square root problem”. If you have
the prime factorizations of various rational in-
tegers and their product is a square, you can eas-
ily find the square root of the square via its
prime factorization. But in Z[α] the problem
does not seem so transparent. Nevertheless,
there are devices for solving this too, though it
still remains as a computationally interesting
step in the algorithm. The interested reader
should consult [15].

Perhaps it is not clear why the number field
sieve is a good factoring algorithm. A key quan-

tity in a factorization method such as the qua-

dratic sieve or the number field sieve is what I

was calling “X” earlier. It is an estimate for the

size of the auxiliary numbers that we are hop-

ing to combine into a square. Knowing X gives

you the complexity; it is about

exp(
√

2 logX log logX) . In the quadratic sieve

we have X about n1/2+ε . But in the number field

sieve, we may choose the polynomial f (x) and

the integer m in such a way that

(a−mb)N(a−αb) (the numbers that we hope

to find smooth) is bounded by a value of X of

the form exp(c′(logn)2/3(log logn)1/3). Thus the

number of digits of the auxiliary numbers that

we sieve over for smooth values is about the 2/3

power of the number of digits of n, as opposed

to the quadratic sieve where the auxiliary num-

bers have more than half the number of digits

of n. That is why the number field sieve is

asymptotically so fast in comparison.

I mentioned earlier that the heuristic run-

ning time for the number field sieve to factor n

is of the form exp(c(logn)1/3(log logn)2/3) , but

I did not reveal what “c” is. There are actually

three values of c depending on which version

of the number field sieve is used. The “special”

number field sieve, more akin to Pollard’s orig-

inal method and well suited to factoring num-

bers like 229
+ 1 which are near high powers, has

c = (32/9)1/3 ≈ 1.523. The “general” number

field sieve is the method I sketched in this paper

and is for use on any odd composite number that

is not a power. It has c = (64/9)1/3 ≈ 1.923. Fi-

nally, Don Coppersmith [5] proposed a version

of the general number field sieve in which many

polynomials are used. The value of “c” for this

method is 
1
3 (92 + 26

√
13)1/3 ≈ 1.902 .  This

stands as the champion worst-case factoring

method asymptotically. It had been thought that

Coppersmith’s idea is completely impractical, but

[8] considers whether the idea of using several

polynomials may have some practical merit.

The State of the Art

In April 1996 a large team (see [7]) finished the

factorization of a 130-digit RSA challenge num-

ber using the general number field sieve. Thus

the gauntlet has finally been passed from the

quadratic sieve, which had enjoyed champion

status since 1983 for the largest “hard” number

factored. Though the real time was about the

same as with the quadratic sieve factorization

of the 129-digit challenge number two years ear-

lier, it was estimated that the new factorization

took only about 15% of the computer time. This

discrepancy was due to fewer computers being

used on the project and some “down time” while

code for the final stages of the algorithm was

being written.



DECEMBER 1996 NOTICES OF THE AMS 1483

So where is the crossover between the qua-

dratic sieve and the number field sieve? The an-

swer to this depends somewhat on whom you

talk to. One thing everyone agrees on: for smaller

numbers—say, less than 100 digits—the qua-

dratic sieve is better, and for larger numbers—

say, more than 130 digits—the number field

sieve is better. One reason a question like this

does not have an easy answer is that the issue

is highly dependent on fine points in the pro-

gramming and on the kind of computers used.

For example, as reported in [7], the performance

of the number field sieve is sensitive to how

much memory a computer has. The quadratic
sieve is as well, but not to such a large degree.

There is much that was not said in this brief
survey. An important omission is a discussion
of the algorithms and complexity of the linear
algebra part of the quadratic sieve and the num-
ber field sieve. At the beginning we used Gauss-
ian elimination, as Brillhart and Morrison did with
the continued-fraction method. But the size of
the problem has kept increasing. Nowadays a fac-
tor base of size one million is in the ballpark for
record factorizations. Clearly, a linear algebra
problem that is one million by one million is not
a trifling matter. There is interesting new work

The First Twenty Fermat Numbers

m known factorization of Fm = 22m + 1
0 3
1 5
2 17
3 257
4 65537
5 641 · P7

6 274177 · P14

7 59649589127497217 · P22

8 1238926361552897 · P62

9 2424833·7455602825647884208337395736200454918783366342657·P99

10 45592577·6487031809·4659775785220018543264560743076778192897·P252

11 319489·974849·167988556341760475137·3560841906445833920513·P564

12 114689·26017793·63766529·190274191361·1256132134125569·C1187

13 2710954639361·2663848877152141313·3603109844542291969·319546020820551643220672513·C2391

14 C4933

15 1214251009·2327042503868417·C9840

16 825753601·C19720

17 31065037602817·C39444

18 13631489·C78906

19 70525124609·646730219521·C157804

In the table, the notation Pk means a prime number of k decimal digits, while the notation Ck means a composite
number of k decimal digits for which we know no nontrivial factorization.

The history of the factorization of Fermat numbers is a microcosm of the history of factoring. Fermat himself
knew about F0 through F4, and he conjectured that all of the remaining numbers in the sequence 22m + 1 are prime.
However, Euler found the factorization of F5. It is not too hard to find this factorization, if one uses the result, es-
sentially due to Fermat, that for p to be a prime factor of Fm it is necessary that p ≡ 1 mod 2m+2, when m is at least
2. Thus the prime factors of F5 are all 1 mod 128, and the first such prime, which is not a smaller Fermat number,
is 641. It is via this idea that F6 was factored (by Landry in 1880) and that “small” prime factors of many other Fer-
mat numbers have been found, including more than 80 beyond this table.

The Fermat number F7 was the first success of the Brillhart-Morrison continued fraction factoring method. Brent
and Pollard used an adaptation of Pollard’s “rho” method to factor F8. As discussed in the main article, F9 was fac-
tored by the number field sieve. The Fermat numbers F10 and F11 were factored by Brent using Lenstra’s elliptic
curve method.

We know that F14, F20 and F22 are composite, but we do not know any prime factors of these numbers. That they
are composite was discovered via Pepin’s criterion: Fm is prime if and only if 3(Fm−1)/2 ≡ −1 mod Fm. The smallest
Fermat number for which we do not know if it is prime or composite is F24. It is now thought by many number the-
orists that every Fermat number after F4 is composite.

Fermat numbers are connected with an ancient problem of Euclid: for which n is it possible to construct a regu-
lar n-gon with straightedge and compass? Gauss showed that a regular n-gon is constructible if and only if n ≥ 3and
the largest odd factor of n is a product of distinct, prime Fermat numbers. Gauss’s theorem, discovered at the age
of 19, followed him to his death: a regular 17-gon is etched on his gravestone.
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on this that involves adapting iterative methods
for dealing with sparse matrices over the real
numbers to sparse matrices over F2. For a recent
reference, see [14].

Several variations on the basic idea of the
number field sieve show some promise. One can
replace the linear expression a−mb used in
the number field sieve with bkg(a/b) , where
g(x) is an irreducible polynomial over Z of de-
gree k with g(m) ≡ 0 mod n. That is, we use two
polynomials f (x), g(x) with a common root m
mod n (the original scenario has us take
g(x) = x−m). It is a subject of current research
to come up with good strategies for choosing
polynomials. Another variation on the usual
number field sieve is to replace the polynomial
f (x) with a family of polynomials along the lines
suggested by Coppersmith. For a description of
the number field sieve incorporating both of
these ideas, see [8].

The discrete logarithm problem (given a cyclic
group with generator g and an element h in the
group, find an integer x with gx = h) is also of
keen interest in cryptography. As mentioned,
Pollard’s original idea for the number field sieve
was born out of a discrete logarithm algorithm.
We have come full circle, since Dan Gordon,
Oliver Schirokauer, and Len Adleman have all
given variations of the number field sieve that
can be used to compute discrete logarithms in
multiplicative groups of finite fields. For a recent
survey, see [22].

I have said nothing on the subject of primal-
ity testing. It is generally much easier to recog-
nize that a number is composite than to factor
it. When we use complicated and time-consum-
ing factorization methods on a number, we al-
ready know from other tests that it is an odd
composite and it is not a power.

I have given scant mention of Hendrik
Lenstra’s elliptic curve factorization method.
This algorithm is much superior to both the
quadratic sieve and the number field sieve for
all but a thin set of composites, the so-called
“hard” numbers, for which we reserve the sieve
methods.

There is also a rigorous side to factoring,
where researchers try to dispense with heuris-
tics and prove theorems about factorization al-
gorithms. So far we have had much more suc-
cess proving theorems about probabilistic
methods than deterministic methods. We do not
seem close to proving that various practical
methods, such as the quadratic sieve and the
number field sieve, actually work as advertised.
It is fortunate that the numbers we are trying to
factor have not been informed of this lack of
proof!

For further reading I suggest several of the ref-
erences already mentioned and also [10, 13, 17,

18, 19, 20]. In addition, I am currently writing a

book with Richard Crandall, PRIMES: A compu-

tational perspective, that should be out sometime

in 1997.

I hope I have been able to communicate some

of the ideas and excitement behind the devel-

opment of the quadratic sieve and the number

field sieve. This development saw an interplay

between theoretical complexity estimates and

good programming intuition. And neither could

have gotten us to where we are now without the

other.
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