This is the May 2014 edition of the Gwern.net newsletter; the previous was March.
This is a summarized version of the revision-history RSS feed, overlapping with Changelog.
Writings
-
short interview with Mike Powers on current darknet markets
Links
Technology:
-
“Exponential and non-exponential trends in information technology” (LW)
-
“The Three Projections of Dr Futamura” (isomorphisms between compilers/interpreters/etc)
-
“It’s the Latency, Stupid” (your computer is faster than you think, but you throw all the performance away)
-
“Life Inside Brewster’s Magnificent Contraption” (Jason Scott on the Internet Archive)
-
Sand as a form of power storage?
The military actively encouraged, when it did not finance directly, the giant cyclotrons, betatrons, synchrotrons, and synchrocyclotrons, any one of which consumed more steel and electricity than a prewar experimentalist could have imagined. These were not so much crumbs from the weapons-development table as they were blank checks from officials persuaded that physics worked miracles. Who could say what was impossible? Free energy? Time travel? Antigravity? In 195470ya the secretary of the army invited Feynman to serve as a paid consultant on an army scientific advisory panel, and he agreed, traveling to Washington for several days in November. At a cocktail party after one session, a general confided that what the army really needed was a tank that could use sand as fuel.1
Silicon is high up on energy density… http://nzenergy-environment.co.nz/home/free-articles/could-silicon-power-stations-replace-coal-and-nuclear.html
Future power stations could burn silicon instead of coal. This is the radical vision of Waikato University scientist Earl Bardsley, who believes the world’s desert sands are an ideal source of silicon. And if this sand can be converted to silicon using solar power, it could be a cheap and eco-friendly solution to the world’s energy needs. Prof Bardsley says solar energy could be used to create silicon from sand at smelters on the desert margins. The only waste product from silicon power stations would be large amounts of solid silicon-dioxide “ash” but this could be recycled back to the smelters to be reduced to silicon again…Prof Bardsley calculates says a stockpile of silicon just a few metres thick over a square kilometre has the same energy content as all NZ’s hydro lakes. He suggests a large solar power system in Australia could provide silicon fuel for a modified Huntly power station. In energy terms, silicon is comparable to coal when burned.
“The Sustainable Global Energy Economy: Hydrogen or Silicon?”, Bardsley 200816ya:
We envisage the use of silicon as a global carrier of renewable energy based on carbon-neutral reduction of silica (quartz) in silicon smelters to yield metallic silicon in bulk supply. The silicon is then shipped around the world for electricity generation in emission-free thermal power stations which oxidise the silicon at high temperature to provide base load electricity. The storage efficiency factor is about 30%, taking into account energy losses in silicon reduction and subsequent conversion to electric power (Auner and Holl, 200618ya).
…The second critical technological requirement is the construction of efficient silicon-fired power stations where the oxidation of fuel silicon can be maintained at a sufficient rate to produce the desired power output. A restricting factor here is that the SiO2 oxidation product remains with the silicon and partially restricts its subsequent oxidation. An operating temperature in excess of 1,600℃ may be required so that both the silicon and SiO2 remain in the liquid phase to maximise continued oxidation through oxygen diffusion into the molten material. Considerations of optimal power station design are beyond the scope of this paper but the silicon combustion process could involve maximising the surface area of the silicon fuel material in an oxygen-enhanced environment. If silicon power stations are indeed viable, then they would be very different from their fossil fuel equivalents in that no emissions are generated and they would yield copious amounts of solid SiO2 ‘ash’ of some 50% greater volume than the original fuel silicon. This inert silicon dioxide might be recycled back to a silicon smelter or used locally in land fill.
Well. That’s not a power system I’ve ever seen proposed before: burning silicon to silicon oxide at 1600424ya degrees. (Is mesothelioma an issue…? On the other hand, hard to be filthier than coal.) Pretty elegant proposal: extract sand from the deserts, purify with solar power to store their variable power for later use, transport and burn locally - and eliminates most of the base load, storage, and transmission problems with other power supplies & with dealing with the randomness of renewable power supplies.
Statistics:
-
“Search for the Wreckage of Air France Flight AF 447”, et al 2014 ( technical report)
-
“Theory-testing in psychology and physics: a methodological paradox”, 1967
-
“The robust beauty of improper linear models in decision making”
-
“Big Data needs Big Model” (converting non-random Xbox-based polling into accurate election forecasts by modeling the non-randomness & adjusting for it)
-
“Non-industry-Sponsored Preclinical Studies on Statins Yield Greater Efficacy Estimates Than Industry-Sponsored Studies: A Meta-Analysis”, et al 2014 (Typically when you look at study results with an industry funding variable, you find that industry studies are biased upwards—this is the sort of study that comes up in books like Bad Pharma—but here we seem to see the opposite: it’s the non-industry, academic/nonprofit/government, funding which seems to be biased towards finding effects. Interestingly, this is for studies early in the drug pipeline, while IIRC the usual studies examine drugs later in the approval pipeline and which have reached human clinical trials. This immediately suggests an economic rationale: early in the process, drug companies have incentives to reach true results in order to avoid investing much in drugs which won’t ultimately work; but later in the process, because they’ve managed to get a drug close to approval, they have incentives to cook the books in order to try to force approval regardless. So for preliminary results, you would want to distrust academic work and trust industry findings, but then at some point flip your assessments and start assuming the opposite. Makes me wonder what the midpoint is where neither group is more untrustworthy?)
Science:
-
“Predictive brains, situated agents, and the future of cognitive science”, 2013
-
“Cosmic Horror: In which we confront the terrible racism of H. P. Lovecraft”
Medicine:
-
“Do We Really Know What Makes Us Healthy?” (Gary Taubes, 200717ya)
-
“The End of Food: Has a tech entrepreneur come up with a product to replace our meals?” (Soylent)
Economics:
-
“SSC Gives A Graduation Speech” (on the value of college and alternatives)
-
“What You Should Know About Megaprojects and Why: An Overview”, 2014
-
“Why Do Firms Buy Ads?” (advertising requires impossibly large sample sizes for meaningful results)
Politics:
-
“Hit or Miss? The Effect of Assassinations on Institutions and War”, 2009
-
“The Borgias vs Borgia: Faith and Fear (accuracy in historical fiction)”
-
“King of Fearmongers: Morris Dees and the Southern Poverty Law Center, scaring donors since 1971”
-
“BUGGER: maybe the real state secret is that spies aren’t very good at their jobs”
-
“Exploring Elitist Democracy: The Latest from Gilens and Page”
Psychology:
-
“Common DNA Markers Can Account for More Than Half of the Genetic Influence on Cognitive Abilities”
-
“Slow Ideas: Some innovations spread fast. How do you speed the ones that don’t?”
Philosophy:
Literature:
-
“Sand Kings”, GRRM
-
“The Island”, Peter Watts
-
“Calmly We Walk through This April’s Day”, Delmore Schwartz
Media
Books
Fiction:
-
The Quantum Thief, Hannu (Accelerando meets Lupin; uncompromising SF, stuffed full of interesting tidbits—the game-theoretic prison at the beginning is only the beginning; self-recommending)
-
Catch-22, Heller (I reread it out of curiosity to see how it’d hold up after all these years. I still enjoyed it.)
Nonfiction:
-
The Wages of Destruction, Tooze 200618ya (review)
-
Letters from a Stoic (Campbell’s translation of Seneca letters)
Film/TV
Movies:
-
Nebraska 201311ya (? My relatives say this is a good depiction of the more Scandinavian parts of the Midwest but it left me deeply nonplussed)
Anime:
-
Summer in Andalusia (Ghibli-esque movie about a professional cycling race in Spain; better than it sounds)
-
Ghost Hound (attempt at psychological/supernatural horror that ultimately falls short of building up to anything interesting)
-
Un-go (lame mysteries in the worst Sherlock tradition, offputting fan-service, not one but two major deus ex machinas; stick to something like Umineko)
Music
Doujin:
-
“それでもグランドマザーは” (ds_8; bacon8tion {201113ya}) [instrumental]
Touhou:
-
“孤独なウェアウルフ” (TAM; 純白の東方子守唄 {R11}) [classical]
-
“春色小径 ~ Colorful Path” (TAM; 純白の東方子守唄 {R11}) [classical]
-
“月時計 ~ ルナ.ダイアル -十六夜” (TAM; 純白の東方子守唄 {R11}) [classical]
-
“幽雅に咲かせ、墨染の桜 alt. ver.” (埼玉最終兵器; Rain Drop {R11}) [instrumental metal]
-
“恋心ひとつ” (ハム; TOHO BOSSA NOVA 3 {R11}) [bossa nova]
-
“Telepathy, Telepathy” (雨宿 どみ乃; デジウィ LEGEND {R11}) [Jpop]
-
“Eternal Verities” (ayame; POP | CULTURE {C84}) [Jpop]
Vocaloid:
-
“bpm (club rework)” (Miku; KTG; CueB Legacy Collection {VM21}) [club]
-
“クラブ流星群 (Extend mix)” (Miku; 味噌汁P CueB Legacy Collection {VM21}) [club]
-
“Just hanging around” (Gumi; ベーコンP; bacon8tion {201113ya}) [Jpop]
-
“Just carry on my way” (Gumi; ベーコンP; bacon8tion {201113ya}) [Jpop]
-
“いつか” (Rin; カラスヤサボウ; goodnight, wonderend {2014}) [Jpop]
-
Surely You’re Joking, Mr Feynman!↩︎