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Abstract. This paper complements theoretical studies on the Kelly rule in evolutionary finance by
studying a Darwinian model of selection and reproduction in which the diversity of investment
strategies is maintained through genetic programming. We find that investment strategies which
optimize long-term performance can emerge in markets populated by unsophisticated investors.
Regardless whether the market is complete or incomplete and whether states are i.i.d. or
Markov, the Kelly rule is obtained as the asymptotic outcome. With price-dependent rather
than just state-dependent investment strategies, the market portfolio plays an important role as
a protection against severe losses in volatile markets.
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1. Introduction

In this paper, we pursue a Darwinian approach to the study of the evolution
of investment strategies in financial markets with short-lived assets. The
model comprises the two main processes, selection and reproduction, in a
genetic programming framework. According to this approach, center stage
is occupied by the population which embodies the investment skills of many
individual strategies. Our investors are simple-minded and unsophisticated
in the sense that they follow preprogrammed behavior rules which are the
result of mutations and crossovers. This simplicity is a key factor, as it opens
up the possibility of studying, in quite a realistic context, the validity of
equilibrium predictions derived from theoretical models that impose strong
assumptions on the market dynamics, as well as on individuals’ rationality or
learning behavior. Our approach complements these models by replacing
their rationality assumptions with a Darwinian selection mechanism in
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which investment strategies emerge with a degree of risk aversion that is
appropriate for survival. This approach also provides information on the
stability properties of equilibria.

In the absence of a reproductive process that creates diversity, the market
selection dynamics for short-lived assets are well-studied from an evolutionary
perspective (Amir et al., 2005; Evstigneev et al., 2002 and 2006), as well as from
a Bayesian viewpoint (Blume and Easley, 1992). The selection pressure in the
model considered here is provided by the wealth dynamics which give invest-
ment strategies that accumulate more wealth than others a stronger impact on
market prices and allocations. Kelly (1956) proved that if markets are com-
plete and consist only of Arrow securities, the rule of ‘‘betting one’s beliefs’’
eventually accumulates all wealth. This rule prescribes dividing wealth across
assets according to the probability of their paying off. In incomplete markets,
the Kelly rule generalizes to the strategy of setting portfolio weights equal
to the assets’ expected relative payoffs (Hens and Schenk-Hoppé, 2005). The
Kelly rule always has a non-negative growth rate relative to the market, and its
growth rate is strictly positive if the other investors do not hold the market port-
folio, which yields zero relative growth. Moreover, if relative asset prices are
given by the portfolio weights of the Kelly rule, this strategy corresponds to the
log-optimal investment (see Algoet and Cover, 1988; Hens and Schenk-Hoppé,
2005). In summary, these papers find that the Kelly rule is selected by the mar-
ket, in the sense of accumulating total market wealth in the long run. However,
these results hinge on restrictive assumptions: either there is an investor who
follows the Kelly rule from the beginning, or there is a Bayesian learner with
logarithmic preferences whose prior includes the true model of the economy.

Related studies on market selection within general equilibrium models
provide less clear-cut results. In dynamically complete markets, the Bayesian
learner with the most accurate beliefs prevails in the long run, regardless of risk
preferences (Blume and Easley, 2006; Sandroni, 2000). Since only beliefs matter
for survival in complete markets, the Kelly rule does not play any prominent
role in this model. For incomplete markets, even the link between the accuracy
of beliefs and survival does not hold in general. Blume and Easley (2006)
provide an example in which an agent with wrong beliefs drives out a trader
with correct beliefs, even though the latter maximizes the logarithmic growth
rate of wealth. The agent with incorrect beliefs judges returns too optimistically
in relation to the true probability measure and ‘‘outsaves’’ the agent with
correct beliefs. In complete markets, Pareto optimality of the equilibrium
allocation precludes this from happening.

Research on the performance of rational versus irrational traders, as well
as the price impact of the latter, is also closely related to this paper because
traders are characterized by rules of behavior. De Long et al. (1990 and 1992)
show that noise traders can survive in markets and impact the prices in the
long run. Survival of a trader, however, is not a necessary condition for price

 at T
he U

nivesity of C
algary on M

ay 24, 2015
http://rof.oxfordjournals.org/

D
ow

nloaded from
 

http://rof.oxfordjournals.org/


ON THE EVOLUTION OF INVESTMENT STRATEGIES AND THE KELLY RULE 27

impact, as clearly demonstrated by Kogan et al. (2006). They find that, even if
a trader’s wealth tends to zero, he can influence prices in the long run through
his impact on the state-price density in states with low payoffs.

None of these results can be regarded as satisfactory from an applied point
of view. First, the general equilibrium approach to market selection does not
offer robust results on asset prices and their long-run dynamics. Since a trader
with an arbitrary (standard) utility function can dominate the market in the
long term, prices are not pinned down. Second, neither the general equilibrium
approach nor the existing literature on the Kelly rule allows for the entry of
new investment strategies or the exit of unsuccessful ones. Third, one cannot
construct the Kelly rule without sufficient information about asset payoffs and
underlying probabilities. Fourth, without this information it is not possible to
construct an appropriate prior and Bayesian learning might fail. Finally, the
chances of seeing the Kelly rule emerge in a market in which the traders do
not have any knowledge of the theoretical results might be slim.

The approach used here provides an evolutionary finance model in which
these shortcomings are overcome. We allow the set of investment strategies
to develop over time in a Darwinian fashion, using a genetic programming
algorithm (Koza, 1992; Smith, 1980) to model the evolutionary process.
Investment strategies are represented as computer programs, and new
investment strategies are produced by genetic recombination of strategies
that have performed well in the past. This maintains diversity in the pool of
investment strategies and occasionally produces new strategies with superior
capability to generate wealth for those investors who adopt them.

Genetic programming belongs to a tradition in computer science which
employs the principles of Darwinian evolution to breed artificially intelligent
agents who can solve complex tasks (Holland, 1975). A pioneering application
in finance is Arifovic (1996)’s analysis of exchange rate fluctuations in an
overlapping generations economy. Following Neely et al. (1997) and Allen
and Karjalainen (1999), there is a growing literature on the usage of genetic
algorithms in identifying profitable trading rules in financial markets. In
a related paper, Lensberg (1999) analyzes a special case of Blume and
Easley (1992)’s investment model in a genetic programming framework and
finds that surviving behavior rules indeed act as expected log-utility maximizers
with Bayesian updating.

Our model describes a situation where investors progressively improve their
skills without Bayesian rationality or other sophisticated learning procedures.
This is possible because investor skill is tacit knowledge, acquired through
imitation and repeated trial-and-error, as emphasized by Polanyi (1967).
Successful investors in our framework are like Friedman (1953)’s billiard
players who somehow manage to get it right, but are unable to explain how.

Market clearing is modeled as in the market game of Shapley and
Shubik (1977). This allows us to focus on the strategic aspects of portfolio
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choice while abstracting from details of implementation. Each agent has an
investment strategy which is used to select portfolio weights. These weights
may depend on information about the current state of the economy and
on historical price information, but the agents must make their decision
without definite knowledge about the prices that prevail when their decision
is implemented in the market. Short selling is not permitted. This excludes
one influence that is capable of correcting prices, although, as shown by De
Long et al. (1990 and 1991), this does not necessarily occur. In each new
period, each agent carries over a portfolio of asset holdings from the previous
period and receives state contingent dividends. The dividends are reinvested
in fresh assets, each of which becomes available in a fixed unit supply. The
Shapley-Shubik mechanism clears the market by simply equating the market
capitalization of each asset (its price) to the total wealth invested in it.

All of this is—by and large—faithful to the original setting proposed by
Kelly (1956), and yet it is in contrast to the general equilibrium approach.
However, there is a close relation to the latter. Market game equilibria
converge to competitive equilibria as the number of traders increases (Shapley
and Shubik, 1977), and any equilibrium price sequence can be mimicked
within our framework when the portfolio weights are allowed to be time- and
history-dependent (Amir et al., 2005).

We perform four sets of experiments in which genetic programs are supplied
only with information about the current state of the economy. The experiments
differ with respect to the market structure and the fundamental stochastic
process. The findings are positive throughout. The Kelly rule emerges from the
population of genetic programs in all experiments. Throughout a transitory
period, however, the market is closer to the theoretical equilibrium than
are the individual investment strategies, an observation that is in line with
experimental findings (see Bossaerts et al., 2005). The information spreads
efficiently through the population so that, eventually, the majority of the
population follows the Kelly rule, i.e., convergence of market and strategies
prevails. In this sense the optimal investment strategy is indeed learned. The
findings are robust with respect to the level of noise that is generated by
mutation, crossovers and the inflow of wealth.

The impact of the availability of price information is studied in detail
within one of these experiments. In that setting, the Kelly rule coincides with
the growth-optimal investment, which is independent of market prices even
though it depends on the state. From a genetic programming perspective, the
problem becomes considerably harder to solve because the number of inputs
to the decision problem increases from 2 (state and asset) to 5 (state, asset and
three prices). Market prices and strategies still converge to those predicted by
the Kelly rule, but the transitional dynamics and successful investment styles
are qualitatively different. An analysis of wealthy genetic programs shows
that the market portfolio plays an important role. Purchasing the market
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portfolio ensures that a constant share of the total wealth is maintained and
low levels of wealth are avoided. This increases a strategy’s chance of survival
by reducing the probability of being deleted by the genetic recombination
process. If state-contingent market clearing prices are perfectly anticipated,
such a strategy neither loses nor gains in the market dynamics. In volatile
markets, there is slippage, but even an approximate market portfolio provides
considerable downside protection.

This study is numerical, and one might ask whether analytical results
exist that would put more solid ground under our findings. From a
mathematical perspective, the major challenge—and also the main departure
from the model considered in Amir et al. (2005)—arises from endowing
newly created strategies with wealth. This process depends on the state
of the market rather than being an exogenous and purely stochastic
event. Given that the analysis in Amir et al. (2005) is quite sophisticated,
analytical results do not appear to be straightforward. Moreover, Amir
et al. (2005) and related papers by Blume and Easley (1992) and Evstig-
neev at al. (2002) only provide results on the asymptotic dynamics of the basic
model. They neither study transient behavior nor provide estimates on the
speed of convergence for the short- and medium-term. Our paper, however, is
particularly concerned with these two issues. Particular emphasis is placed on
the properties of the wealthiest investment strategy where little or nothing is
known, in general, because of its highly path-dependent nature.

The remainder of the paper is organized as follows. Section 2 presents
the Darwinian model of a financial market in three steps: wealth dynamics,
2.1, investment strategy dynamics, 2.2, and implementation of the genetic
algorithm, 2.3. The experiments are presented in Section 3: General results
are given in 3.1, and a detailed analysis of the complete market with Markov
states is provided in 3.2. The case of price-dependent strategies is considered
in Section 4. Section 5 concludes.

2. A Darwinian Finance Model

This section introduces an evolutionary model of a financial market with short-
lived assets. The model incorporates the two Darwinian processes of selection
and reproduction. Selection is given by the wealth dynamics among a fixed set
of investment strategies, and reproduction imposes a dynamic structure on the
set of strategies itself. Both processes are captured here by implementing the
model using genetic programming.

2.1 WEALTH DYNAMICS

We briefly recall the evolutionary finance model studied in Amir et al. (2005),
Evstigneev et al. (2002 and 2006) and Hens and Schenk-Hoppé (2005). This
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model describes the wealth dynamics among a given pool of I investment
strategies that interact in a financial market. Time is discrete, t = 0, 1, 2, . . ..
There are K assets with random payoffs Dk(s) ≥ 0, k = 1, . . . ,K, with∑K

k=1 Dk(s) > 0. Here s = 1, . . . , S denotes the state of nature. Each asset
is short-lived and in fixed supply of one unit. An investment strategy is
a sequence of time- and history-dependent vectors of portfolio weights
λi

t = (λi
1,t , . . . , λi

K,t ), λi
k,t ≥ 0 and

∑K
k=1 λi

k,t = 1.
The price of asset k at time t is given by qk,t := λk,twt = ∑I

i=1 λi
k,t wi

t , i.e., qk,t

is equal to the total amount of wealth invested in asset k. Investor i’s portfolio
holdings in asset k is determined as λi

k,t wi
t /λk,twt = λi

k,t wi
t /qk,t which is a

fraction of the one unit supplied. Each strategy’s wealth in the next period is
determined by the total receipts of random asset payoffs which are distributed
according to the portfolio holdings.

The evolution of the distribution of wealth wt = (w1
t , . . . , wI

t ) across
investment strategies is governed by

wi
t+1 =

K∑
k=1

Dk(st+1)
λi

k,t wi
t

λk,twt

(1)

for i = 1, . . . , I . The state st+1 is randomly drawn according to a given
probability distribution.

The pricing equation qk,t = λk,twt merits a more detailed discussion. It
is the market clearing condition of the Shapley and Shubik (1977) market
game, which equates the market capitalization of an asset to the total amount
of wealth invested in it. Since each asset is in one-unit fixed supply, this
is simply the price of asset k. Thus, the Shapley-Shubik market game
simultaneously clears, with each time step, K markets and yields a unique
short-term equilibrium price vector. That is quite different from agent-based
models, where usually only one market-clearing price is needed (Hommes,
2001). From the definition, it is clear that each strategy’s impact on the price
is proportional to its wealth. Short selling is excluded to avoid bankruptcy,
which would be prevalent in the presence of a short-run equilibrium. For
Arrow securities, which have a positive payoff in one state of the world
and pay zero otherwise, the price determines the odds of the corresponding
bet; they are given by Dk(st+1 = k)/qk,t . In this respect, the market-clearing
mechanism corresponds to the one used in parimutuel betting markets.

Equation (1) can be interpreted as the market selection dynamics. Strategies
that have higher wealth than their competitors are considered to be fitter. If
one strategy accumulates total wealth in the long term, it is said to be selected
by the market. Since prices are a weighted combination of the strategies with
weights equal to wealth, such a strategy asymptotically ‘determines’ asset
prices: relative prices are asymptotically equal to the portfolio weights of a
selected strategy.
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The introduction of investment strategies, as well as the above definition
of asset prices, marks a departure from the general equilibrium approach to
market selection, where agents have demand functions and maximize utility
over an infinite time-horizon (Blume and Easley, 1992 and 2006; Sandroni,
2000). Notwithstanding the apparent simplicity of the model, Amir et al. (2005)
have shown that each equilibrium price path in such a general equilibrium
model can be obtained by an appropriate specification of investment strategies
whose portfolio weights are, in general, time- and history-dependent.

2.2 DYNAMICS OF INVESTMENT STRATEGIES

The wealth dynamics of the standard evolutionary finance model describe
how the aggregate behavior changes over time for a fixed set of investment
strategies. Here, the set of investment strategies is changing over time as well.
This allows investigating whether the market mechanism is strong enough for
the population to discover the Kelly rule, even though each individual investor
lacks the analytical ability to do so.

The maximum number of investment strategies that can be active in the
market at any period of time is limited to a finite number I . Each investment
strategy λi = (λi

1, . . . , λi
K) is represented by a program which is given in the

form of a function

λ̃
i

: S × {1, . . . ,K} → R, (2)

where S is the set of potential signals σ associated with the true state s. λ̃
i

k(σ )

is the non-normalized budget allocated to the purchase of asset k, given that
the last observed signal is σ . Examples of programs are provided in Table I . In
order to compute the portfolio weights for a given function λ̃

i
, a normalization

is carried out as follows. First define λ
i

k(σ ) := max{0, λ̃
i

k(σ )}, and then let
λi

k(σ ) := λ
i

k(σ )/[
∑K

n=1 λ
i

n(σ )]. If the denominator is zero, we set λi
k(σ ) = 1 for

some randomly chosen k.
Two main cases are considered: (a) state-dependent strategies with complete

information about states, i.e., S = {1, . . . , S}, and (b) price-dependent
strategies where the set of signals contains the last observed price vector
corresponding to the present state, i.e., S = {1, . . . , S} × R

K . In general the
information set could be an indexed partition of the state space or contain
other information such as asset payoffs and their moving averages.

2.3 IMPLEMENTATION BY GENETIC PROGRAMMING

Genetic programming (GP) (Koza, 1992; Smith, 1980) is a technique for
programming computers by natural selection. It addresses the challenge of
getting a computer to do what needs to be done without explaining everything
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in detail, and it attempts to achieve this goal by breeding a population of
programs using the principles of Darwinian selection and reproduction. The
idea of mimicking evolution to simplify software design was introduced by
Holland (1975), and it has been used successfully by computer scientists to
solve problems in a variety of engineering fields. For our purpose, it is used as
a model of decision making in the presence of tacit knowledge and bounded
rationality.

GP-algorithms produce programs which consist of instructions to read or
manipulate data. Each program produces some output, which the modeler
interprets as the action taken by the program, and this action is evaluated
to obtain a measure of the program’s fitness. In our particular context, the
action taken consists of the portfolio weights allocated to the K assets and the
natural fitness measure is the accumulated wealth of the program.

In order to find the computer program which best solves a given task, the
GP-algorithm starts by randomly generating a large population of programs.
It then continues for a large number of iterations by replacing low performing
programs with a genetic recombination of high performing ones. The standard
genetic operators are crossover and mutation. These are explained below, along
with an additional operator (noise) that is used here to test the robustness of
our results.

GP-algorithms differ in the way they mimic Darwinian evolution. Here, a
steady-state algorithm with tournament selection is used. It works as follows:

1. Tournament: Randomly select four programs from the pool and rank
them according to their accumulated wealth.

2. Reproduction: Replace the two programs with lowest wealth with copies
of the other two.

3. Mutation: Each of the two programs copied undergoes a mutation with
probability µ: randomly select a single instruction from the program,
and replace it with a randomly generated instruction.

4. Crossover: With probability χ , recombine the genetic material of the
two copied (and possibly mutated) programs by swapping one randomly
selected set of instructions from both programs.

5. Noise: Each of the two newly generated programs is replaced by a
randomly selected program with probability η.

If a program has strictly positive wealth, it leaves the tournament with the
same wealth. However, if a program has zero wealth, it is endowed with one
percent of the average wealth which is given by (1/I)

∑K
k=1 Dk(st+1).

The algorithm is run for a population size of 1,000 and 250,000 iterations,
with 20 tournament selections per iteration. The mutation and crossover
probabilities are set to µ = 0.9 and χ = 0.5, respectively, and the noise
probability η is varied from 0 to 0.96 in order to check the robustness of our
results.
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GP-algorithms also differ with respect to the type of building blocks they use
to construct individual programs. One typically uses a subset of elementary
instructions from some existing programming language, such as LISP, Java
or machine code. In this paper, we use a machine code version of GP, which
is introduced by Nordin (1997): each program consists of a list of machine
instructions which operate on variables and constants stored in memory, using
the CPU floating point registers to store and manipulate temporary variables.

Table I illustrates some aspects of the machine code GP algorithm by
means of an example in which the maximum program length is limited to 6
instructions. In practice, the maximum program length is much larger; in our
simulations, it consists of 128 instructions. The left part of the table depicts two
programs, A and B, with 5 and 6 instructions, respectively. The right part shows
the outcome of a crossover at instruction slots 3–6, which produces two new
programs, C and D. R0 and R1 refer to floating point registers 0 and 1 of an Intel
compatible CPU, which has a total of 8 such registers. The GP algorithm clears
these registers by loading them with the value 0.0 before passing a program to
the CPU for execution. Input variables consist of the state s and asset k (see
Equation (2)), and the output is the content of register R0 after all program
instructions have been processed by the CPU. The output is interpreted as the
non-normalized portfolio weight λ̃k(s) for asset k in state s. For Program A,
the normalized portfolio weights λk(s) are constant and equal to 1/K for each
state and asset, while for Program C they vary according to state and asset.

Instead of using GP to model the dynamics of investment strategies, a genetic
algorithm (GA) (Holland, 1975) could be used in the first set of experiments.
The main difference is that GA operates on vectors of numbers instead of
vectors of program instructions. GA is applicable as long as the set of signals
is finite (e.g., if only state and asset index are contained in the information
set). Any investment strategy can then be represented as a vector of real
numbers. Evolving such vectors with GA is simpler and computationally less
demanding than evolving functions with GP. If strategies can also use past

Table I. Example of the program structure and the crossover operation

Instr.
Before crossover After crossover

slot Program A Program B Program C Program D

1 R0 = s R1 = k R0 = s R1 = k

2 R1 = k R0 = R0 − 2 R1 = k R0 = R0 − 2

3 R1 = R1 ∗ R0 R0 = R0 ∗ R0 R0 = R0 ∗ R0 R1 = R1 ∗ R0

4 R0 = R0/5 R0 = R0/R1 R0 = R0/R1 R0 = R0/5
5 Return R0 R0 = min(R0, R1) R0 = min(R0, R1) Return R0

6 Return R0 Return R0

λ̃k(s) s/5 min(4/k, k) min(s2/k, k) −2/5
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prices, the information set is a continuum and so is the range of strategies. For
these experiments, the full generality of GP, which provides us with functional
relations, is needed to analyze the model.

3. The Experiments

Four sets of experiments are simulated to analyze the impact of a change in
the market structure, as well as in the stochastic process that determines the
state. The market is either complete (i.e., the rank of the payoff matrix is equal
to the number of states) or incomplete (i.e., there are fewer assets than states).
The state of nature is given either by an i.i.d. process or a Markov process.

In each experiment, there are three states of nature, s = 1, 2, 3, and K = 3
resp. K = 2 assets. The payoff matrix D is defined in Table II. Note that the
complete market consists of Arrow securities.

In the i.i.d. case, all states have equal probability, i.e., πs = 1/3 for s =
1, 2, 3. In the Markov case, however, the probability of the next period’s state
depends on the current state. The matrix of transition probabilities is given by

� =

 0.7 0.2 0.1

0.1 0.7 0.2
0.2 0.1 0.7


 . (3)

The stationary distribution of this Markov process, denoted by ρ, is given by
ρ1 = ρ2 = ρ3 = 1/3.

The Kelly rule in each of these cases is given by the expected values of the
assets’ relative payoffs:

λ∗
k(s) =

S∑
u=1

�suR
k(u), where Rk(u) = Dk(u)∑K

n=1 Dn(u)
, (4)

with k = 1, . . . ,K and s = 1, . . . , S. In the i.i.d. case, the current state
does not impact the probability of the next period’s state, i.e., �su ≡ πu,
and, therefore, the Kelly rule is a constant vector. Table III summarizes the
numerical values of the Kelly rule in the four experiments.

The investment strategy λ∗ provides the equilibrium prediction for the
long-run outcome of individual behavior, as well as for the asymptotic values

Table II. Payoff matrix D in the complete, resp. incomplete, market
case

Complete market Incomplete market

D =

 1 0 0

0 2 0
0 0 3


 D =


 1 1

1 1
0 3



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Table III. Kelly rule in the four experiments

IID Markov

Complete Incomplete Complete Incomplete

λ∗ ≡
(

1
3
,

1
3
,

1
3

)
λ∗ ≡

(
1
3
,

2
3

) λ∗(s = 1) = (.7, .2, .1) λ∗(s = 1) = (.45, .55)

λ∗(s = 2) = (.1, .7, .2) λ∗(s = 2) = (.40, .60)

λ∗(s = 3) = (.2, .1, .7) λ∗(s = 3) = (.15, .85)

of (relative) asset prices. The two main questions to be investigated are (1)
whether the competitive process of genetic programming is powerful enough
to drive the population towards the Kelly rule and, if yes, (2) whether this
convergence is robust against noise.

To answer the first question, the distance between the Kelly rule and the
wealthiest investment strategy is measured, as well as the distance to the market
prices. Prices are equal to the average strategy of the population because they
correspond to the wealth-weighted average, as explained in Section 2.1. The
wealthiest strategy is defined here as the sequence of investment strategies that
is provided by selecting, in any one period in time, the strategy with the highest
wealth. Two measures are applied: (a) the Euclidean distance and (b) the
expected growth rate. The latter quantity measures the growth potential of an
investment strategy relative to a benchmark. Two benchmarks are employed:
the Kelly rule and the current state of the market, which is given by the current
price system.

The second question on the robustness of the convergence is analyzed by
comparing long-term outcomes for different values of the average number
of randomly generated programs. This is achieved by varying the noise
probability η, see Step 5 of the GP-algorithm.

3.1 SIMULATION RESULTS

Each experiment consists of a simulation of a population of I = 1, 000 genetic
programs. Programs are initialized by randomly chosen functions, which are
arrays of random length, filled with random draws from the instruction set.
The noise probability η is varied, in each experiment, between 0 and 0.96 with
increments of 0.04. The Darwinian finance model is run for a total of 250,000
periods for each set of parameters.

The distance measures are defined as follows. The probability-weighted
Euclidean distance between a strategy λi and the Kelly rule λ∗ is given by

d∗(λi) := ∑S
s=1 ρs

√∑K
k=1(λ

i
k(s) − λ∗

k(s))
2. (5)

In the i.i.d. case, the stationary distribution ρ is given by ρs = πs .
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36 TERJE LENSBERG AND KLAUS REINER SCHENK-HOPPÉ

The second distance measure can be defined in terms of the growth rate of a
strategy λi relative to the Kelly benchmark, g∗(λi), or its growth rate relative
to the market, gM(λi). The first one is defined as

g∗(λi) := exp

(
S∑

s=1

ρs

S∑
u=1

�su ln

(
K∑

k=1

Rk(u)

λ∗
k(s)

λi
k(s)

))
, (6)

where the relative payoffs Rk(u) are given by (4) and ρ is the stationary
distribution of the stochastic process that determines the state of nature. In
the i.i.d. case, one has �su ≡ πu and λ∗

k(s) ≡ λ∗
k in Equation (6). Taking the

exponential allows a comparison of growth rates in terms of percentages.
The standard definition is obtained by dropping the exponential function (see
Hens and Schenk-Hoppé, 2005). One could also try to measure the distance
by the relative entropy of strategy λi and the Kelly rule. In the case of Arrow
securities the relative entropy is equal to the expected logarithmic growth
rate of λi . However, if the market is incomplete, the relative entropy, in
general, provides no information about a strategy’s growth rate (see, e.g.,
Blume and Easley, 2006; Sandroni, 2005). The growth rate relative to the
market, gM(λi), is defined by replacing λ∗

k(s) in (6) by the (moving) benchmark
λM

k (s) := pk(s) = qk(s)/[
∑K

n=1 qn(s)]. pk(s) is the relative price of asset k.
The simulation results for these different measures are summarized in

Tables IV and V. In both IID experiments, investment behavior converges
quickly to the Kelly benchmark for all noise levels. This can be seen from

Table IV. Summary statistics for 4 sets of experiments without price information

The table contains sample statistics across all runs and iterations for relative growth rates
and distances from the Kelly benchmark. λW denotes the wealthiest strategy and λM

denotes the market portfolio. The number of observations for each variable is 6,250 (250
samples of 25 runs).

IID Markov

Variable Mean Std.dev Min Max Mean Std.dev Min Max

Complete market

d∗(λW ) 0.001 0.022 0.000 0.817 0.054 0.048 0.003 1.128
d∗(λM) 0.001 0.006 0.000 0.305 0.053 0.044 0.002 0.715
g∗(λW ) 0.999 0.038 0.000 1.000 0.988 0.033 0.000 1.000
gM(λW ) 0.998 0.044 0.000 1.005 0.996 0.058 0.000 1.008

Incomplete market

d∗(λW ) 0.003 0.009 0.000 0.196 0.061 0.032 0.014 0.374
d∗(λM) 0.003 0.007 0.000 0.179 0.023 0.017 0.001 0.251
g∗(λW ) 1.000 0.000 0.990 1.000 0.999 0.001 0.959 1.000
gM(λW ) 0.999 0.031 0.000 1.009 0.989 0.098 0.000 1.010
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ON THE EVOLUTION OF INVESTMENT STRATEGIES AND THE KELLY RULE 37

Table V. Average wealth of 5 groups of investment strategies in the 4 sets of experiments
without price information

This table shows the proportion of wealth owned by the wealthiest strategy (λW ) and by
those strategies that are close to the Kelly rule in terms of relative growth rates (g∗ ≥ . . .).
Numbers are averages taken across 6,250 observations for each experiment.

Dividend Market
λW g∗ ≥ 0.950 g∗ ≥ 0.975 g∗ ≥ 0.990 g∗ ≥ 0.999

process structure

IID
Complete 0.040 0.999 0.999 0.998 0.998
Incomplete 0.789 0.997 0.997 0.995 0.991

Markov
Complete 0.568 0.981 0.926 0.538 0.217
Incomplete 0.528 0.996 0.994 0.988 0.625

the small means and standard deviations of the two distance measures d∗(λW)

and d∗(λM) in Table IV. In the Markov experiments, the mean distances
from the Kelly benchmark are higher. Nonetheless, the wealthiest strategy
performs quite well relative to the market, as well as to the Kelly benchmark,
as manifested by the high relative growth rates g∗(λW) and gM(λW). Table V
shows, however, that the wealthiest strategy does not possess the entire market
wealth. A substantial amount of wealth is managed by other investment
strategies (for instance nearly 50% in both Markov experiments), but those
strategies are also quite close to the Kelly rule in terms of relative growth rates,
as can be seen from the 4 rightmost columns of Table V.

In the Markov cases, particularly in the incomplete market setting, the price
system is closer to the Kelly benchmark than the wealthiest investment strategy,
i.e., the market is ‘‘smarter’’ than the most successful investor, cf. Table IV.
This finding is in line with Bossaerts et al. (2005). In experiments with human
subjects, they find that, while asset prices converge quickly and agree—by
and large—with those of the CAPM, the portfolio choice predictions of this
theory remain significantly off target throughout the experiment.

We analyze the Markov experiments in more detail by regressing distances
on noise and simulation time in a panel data model with random effects and
autoregressive errors. The estimated relationship is

ln(d∗
rt ) = β0 + β1 ln(t/250) + β2 ln(1 − ηr) + ur + εrt , (7)

where ur is a run specific error term and εrt is AR(1). d∗
rt is the Euclidean

distance from the Kelly rule at iteration 1000 · t of run r and ηr is the noise
level in run r . Table VI contains the results. Estimated parameters are given
in Panel (A) and predicted distances for selected values of the explanatory
variables are given in Panel (B).

The negative coefficients of ln(t/250) and ln(1 − ηr) in panel (A) show
that distances from the Kelly rule decrease over time and that the process
slows down when the noise level is increased. Panel (B) gives the predicted
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Table VI. Model and predicted values of Euclidean distance from the Kelly rule.
Markov dividend process.

The estimated model is ln(d∗
rt ) = β0 + β1 ln(t/250) + β2 ln(1 − ηr) + ur + εrt , where

ur is a run specific error term and εrt is an AR(1) process. d∗
rt is the Euclidean distance

from the Kelly rule at iteration 1000 · t of run r and ηr is the run r noise level. λW

denotes the wealthiest strategy and λM denotes the market portfolio. Standard errors
are given in parentheses. * and ** denote significantly different from zero at the 5% and
1% level, respectively (two-tailed test).

Dependent
(A) Parameters (B) Predicted distance

variable β0 β1 β2 R2 t\η 0.9 0.5 0.0

Complete market

d∗(λW )
−4.238** −0.585** −0.490** 0.474 5 0.439 0.200 0.142
(0.139) (0.019) (0.113) 250 0.045 0.020 0.014

d∗(λM)
−4.220** −0.541** −0.502** 0.477 5 0.387 0.172 0.122
(0.145) (0.018) (0.119) 250 0.047 0.021 0.015

Incomplete market

d∗(λW )
−3.246** −0.170** −0.190* 0.196 5 0.117 0.087 0.076
(0.109) (0.006) (0.090) 250 0.060 0.044 0.039

d∗(λM)
−4.515** −0.254** −0.323** 0.284 5 0.062 0.037 0.030
(0.073) (0.008) (0.059) 250 0.023 0.014 0.011

(shrinking) distance to the Kelly rule for noise levels 0, 0.5 and 0.9. The most
striking observation is that, in all cases, the wealthiest investment strategy, as
well as the market, converges to the Kelly rule. Even for high values of the
noise parameter, convergence prevails, though at a lower speed.

Panel (B) of Table VI also shows that the market is closer to the Kelly rule
than the wealthiest investment strategy, in particular at the beginning of each
experiment. The effect is particularly pronounced in the incomplete market
case with Markovian states. This observation implies that there are strategies
in the market that move prices closer to the Kelly rule, though they do not
provide the wealthiest strategy in the market.

3.2 COMPLETE MARKET WITH MARKOV STATES

This section provides a more detailed analysis of the case with a complete
market and a Markov payoff process. The goal of this exercise is to obtain a
better insight into the mechanisms that drive the Darwinian dynamics which
give rise to the findings reported above. This particular case is chosen because
it exhibits the highest deviation of prices from the Kelly rule. The noise
probability is set to 20% throughout the following.
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ON THE EVOLUTION OF INVESTMENT STRATEGIES AND THE KELLY RULE 39

Figure 1. Euclidean distance between the market prices resp. the wealthiest strategy and
the Kelly rule.

Figure 1 shows the distance between the Kelly benchmark and the market,
d∗(λM), as well as the wealthiest strategy, d∗(λW), for one run of the simulation,
see (5). Both distance measures decrease almost monotonically, and the descent
mainly follows a step function. In this leapfrogging movement towards the
benchmark, the wealthiest strategy is overtaken, every now and again, by a
better performing competitor. This occurs only nine times during the time
horizon considered in Figure 1. This observation implies that, most of the
time, the wealthiest strategy is not the rule with the highest growth rate. The
competing strategy that eventually replaces the wealthiest rule is typically
much closer to the Kelly rule, as shown by the size of the steps in the
convergence. If the wealthiest strategy is close to the Kelly rule, this process
takes a considerable amount of time. The reason is that genetic programming
creates better, but somewhat poorer, strategies from the genetic material of
the wealthiest rule rather than improving the currently richest strategies. After
250,000 iterations, the wealthiest strategy is very similar to the Kelly rule, with
a distance of only 0.003. This number is in agreement with the results reported
in Table VI.

The distance between market prices and the Kelly rule displays similar
behavior though, in most periods, this measure is closer to the Kelly rule
than the wealthiest strategy. Only in the last 20,000 iterations is the market
price further away from the benchmark than the wealthiest strategy. This
particular effect is caused by the relatively small perturbation through the
noise component of the tournament, which has a stronger impact when the
population is very close to the benchmark.

On the aggregate level, interest focuses on the convergence dynamics of asset
prices. Figure 2 shows the relative price of Asset 1 for each period of time and
for each state s = 1, 2, 3 (one of which is revealed in any given period) for a
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40 TERJE LENSBERG AND KLAUS REINER SCHENK-HOPPÉ

Figure 2. Relative price of Asset 1 by state and iteration. Horizontal lines correspond
to the Kelly benchmark.

simulation of one run of 250,000 iterations. The benchmark, which is given by
the Kelly rule, is the set of relative asset prices p∗

1(1) = 0.7, p∗
1(2) = 0.2 and

p∗
1(3) = 0.1 in states 1, 2 and 3, respectively. The simulated prices are some

distance from the benchmark in the first 150,000 iterations, but they exhibit
a clear tendency to converge to this benchmark. After approximately 175,000
iterations, the relative prices are almost identical to those derived from the
Kelly rule. However, systematic mispricing occurs over long time horizons.
For instance, in state 1, the asset is first undervalued and later overvalued.
Moreover, the prices in all states can simultaneously be too low compared
to the benchmark. In Figure 2, this occurs during iterations 30,000–40,000.
Relative prices of an asset do not necessarily sum up to one across states, but
of course, the sum across relative asset prices is equal to one in each state.

A proxy for the genetic material that is present in the population is provided
by the distribution of growth rates relative to the Kelly rule. These values
are, in fact, only potential growth rates because many strategies have zero
wealth. Figure 3 reports the distribution of the individual growth rates relative
to the Kelly rule for the entire population across iterations. An analysis of
the distribution of growth rates relative to the current market prices gives a
similar picture to the one provided in Figure 3.

Programs with a zero relative growth rate (defined in (6)) consist of strategies
that are not fully diversified; a behavior that carries a positive probability of
losing all one’s wealth. The second group consists of strategies with positive
relative growth rates below 0.95. A large proportion of these strategies have
constant and equal portfolio weights, a strategy which yields a relative growth
rate of 0.7432. These programs simply return the same constant for each
asset and state. They are quite successful in the first 1,000 iterations of
the simulation, because they avoid mistakes, such as under-diversification
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Figure 3. Distribution of growth rates in the population relative to the Kelly rule. (Data
are exponentially smoothed, with a parameter value of 0.2.).

or extreme deviations from actual probabilities. Since the probability of
generating such a strategy from scratch or by crossover is high, the population
contains a large proportion of those in the early stages of the simulation.

The distribution of relative growth rates changes significantly over time. The
number of strategies with equal weights is quickly reduced from an initially
high level. The reason is that, as the fraction of efficient strategies increases,
the equal weight strategies lose money faster, which reduces their chances of
reproducing. Halfway into the simulation, strategies with relative growth rates
above 0.999 begin to take over and, after 250,000 iterations, they make up
about 40% of the population. This illustrates the ability of the GP-algorithm
to generate extremely efficient investment strategies.

Interestingly, the fraction of strategies with a zero relative growth rate
increases from approximately 20% to 30% during the simulation. Since these
strategies are not fully diversified, they act like gamblers who take extreme
positions in some assets. We believe this result is driven by the following
evolutionary mechanism: since wealth is a prerequisite for reproduction, the
struggle for survival is basically a struggle to get rich. As the population
becomes dominated by extremely efficient strategies, it grows harder to get
rich by investing prudently. This makes gambling for large stakes increasingly
attractive as it can open a window of opportunity to reproduce. By this
mechanism, competition produces not only more winners but also more
losers, which is in agreement with Figure 3.

4. Price-dependence and Market Dynamics

This section presents a generalization of the previous setting: strategies are
given access to information on past prices. The main issue is how and to what
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42 TERJE LENSBERG AND KLAUS REINER SCHENK-HOPPÉ

extent genetic programs use this additional information. To obtain robust
results, a case is analyzed in which the growth-optimal portfolio coincides with
the Kelly rule for all prices, but where the latter is dependent on the state of
nature. Prices should not matter for a growth-oriented investor, though states
should. We focus on the experiment with a complete market and a Markov
dividend process, studied in detail for state-dependent strategies in Section 3.2.

The availability of price information indeed gives rise to new types of
behavior. The simulation results reported below show in particular that a
prominent role is played by the market portfolio. Its importance is due to the
fact that buying the market portfolio entails a constant share of total wealth
and hence increases its probability of survival and reproduction relative to a
strategy with more volatile payoffs.

In order to see that buying the market portfolio preserves relative wealth,
consider a strategy, denoted λM , whose portfolio weights correspond to the
relative prices pk,t (which are the market portfolio weights):

λM
k,t = pk,t := qk,t∑K

n=1 qn,t

. (8)

Let wM
t denote the wealth of strategy λM . The portfolio holdings of this

strategy are equal to

θM
k,t := λM

k,tw
M
t

qk,t

= wM
t∑K

n=1 qn,t

= wM
t

Wt

= rM
t ,

where Wt := ∑I
i=1 wi

t = ∑K
n=1 qn,t is the total wealth and rM

t is the relative
wealth of strategy λM . It holds the same amount of units of each asset because
θM

k,t is independent of k. Its payoff can be computed as

wM
t+1 =

K∑
k=1

Dk(st+1)θ
M
k,t =

K∑
k=1

Dk(st+1)r
M
t = D(st+1)r

M
t ,

with D(st+1) denoting the aggregate dividend payoff in state st+1. It follows
from (1) that D(st+1) = Wt+1. Thus, an investor who buys the market portfolio
has constant relative wealth, i.e., rM

t+1 = rM
t .

To introduce price dependency, an investment strategy is defined here as
a function λ̃ : {1, . . . , S} × R

K × {1, . . . ,K} → R, where λ̃k(s, p̂(s)) is the
(non-normalized) portfolio weight of asset k given that the current state is s.
The information set is S = {1, . . . , S} × R

K . The new argument p̂(s) denotes
the most recently observed relative price vector corresponding to the current
state s. For instance, if (st−3, st−2, st−1, st ) = (1, 1, 2, 1), where s = st = 1, then
p̂(s) is the vector of relative prices observed in period t − 2. Trading is subject
to slippage because strategies only have access to the last observed price vector
(i.e., for the current state) rather than the current market clearing prices. This
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slippage comes from the time elapsing from order placement to execution,
which precludes the purchase of a perfect market portfolio. However, if prices
exhibit low volatility, the strategy defined in (8) delivers an asset allocation
that corresponds well with the market portfolio. In periods of high volatility,
the fit is not so good. Despite the slippage, this proxy of the market portfolio
provides an opportunity to protect one’s investment from downside risk at the
cost of missing out on its upside. Carrying out a market portfolio investment
is actually a simple task for the genetic programs: they only have to output the
price of the relevant assets, whereas any other behavior requires computation.
The following shows that successful investment strategies make skillful use of
this investment opportunity.

Extending the information set from states to states and prices more than
doubles the number of input variables to any given strategy. The new data are
vectors of real numbers rather than elements of a finite set. This increases the
complexity faced by the GP-algorithm considerably. Since this is likely to slow
down convergence, the effect of doubling the population size to 2,000 is tested.
Table VII presents the result of applying the regression model in Equation (7)
to data from a simulation with 25 runs, with noise levels between 0 and 96%,
and population sizes of 1,000 and 2,000. The increase in population size indeed
compensates for the increase in complexity, cf. Table VI. As in the correspond-
ing base case considered in Section 3.2, the noise probability is set to 20%.

Table VII. Model and predicted values of Euclidean distance from the Kelly rule for price-
dependent strategies. Markov dividend process and complete market.

The estimated model is ln(d∗
rt ) = β0 + β1 ln(t/250) + β2 ln(1 − ηr) + ur + εrt , where ur is a run

specific error term and εrt is an AR(1) process. d∗
rt is the Euclidean distance from the Kelly rule

at iteration 1000 · t of run r and ηr is the run r noise level. λW is the wealthiest strategy and λM

is the market portfolio. Standard errors are given in parentheses. * and ** denote significantly
different from zero at the 5% and 1% level, respectively (two-tailed test).

Dependent
(A) Parameters (B) Predicted distance

variable β0 β1 β2 R2 t\η 0.9 0.5 0.0

Population size of 1,000

d∗(λW )
−3.354** −0.340** −0.239** 0.259 5 0.229 0.156 0.132
(0.074) (0.011) (0.060) 250 0.061 0.041 0.035

d∗(λM)
−3.360** −0.336** −0.241** 0.253 5 0.226 0.153 0.129
(0.074) (0.011) (0.060) 250 0.061 0.041 0.035

Population size of 2,000

d∗(λW )
−3.911** −0.482** −0.334** 0.392 5 0.285 0.166 0.132
(0.067) (0.013) (0.054) 250 0.043 0.025 0.020

d∗(λM)
−3.934** −0.484** −0.338** 0.388 5 0.283 0.164 0.130
(0.068) (0.013) (0.055) 250 0.043 0.025 0.020
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The dynamics of the Euclidean distance between the wealthiest strategy and
the Kelly rule, reported in Figure 4, are strikingly different from the base
case depicted in Figure 1. Volatility is much higher, there is no leap-frogging
effect and, despite the variability of prices, the market is not closer to the
Kelly rule than the wealthiest rule. Moreover, there are occasional bursts of
large deviations from a generally volatile trend toward smaller distances, cf.
Table VII.

The dynamics of prices are captured in Figure 5, which depicts one time
series of 250,000 iterations’ length for the relative price of Asset 1 for each of
the states s = 1, 2, 3. The benchmark is given by the Kelly prices p∗

1(1) = 0.7,

Figure 4. Euclidean distance between the Kelly rule and the wealthiest strategy resp. the
market prices (which are virtually identical here) for price-dependent strategies.

Figure 5. Relative price of Asset 1 by state and iteration (in 1,000s) for price-dependent
strategies and corresponding Kelly benchmark (horizontal lines).
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p∗
1(2) = 0.2 and p∗

1(3) = 0.1 in the respective states, cf. Table III. Figure 5
shows that prices have a clear tendency to vary around their respective Kelly
benchmark levels, except for a short initial period of 2,000 iterations, during
which significant mispricing occurs. A comparison with the corresponding
case without price information (Figure 2) reveals that the availability of price
information creates a considerable amount of persistent price volatility.

In order to obtain an understanding of the market dynamics with price-
dependent strategies, a careful analysis of the successful investment strategies
and their market shares is necessary. It turns out that good performing
strategies use price information in a sophisticated way while, at the same
time, being composed of similar ‘‘building blocks.’’ In particular, usage of the
market portfolio is wide-spread. Averaging across all 250,000 iterations, 30%
of the population (representing about 32% of the total wealth) buy the market
portfolio. The strategies which use some price information, without necessarily
buying the market portfolio, amount to 97.5% of the population and represent
about 99.99% of the total wealth on average. In the setting with price-dependent
strategies, it seems that price information is necessary for survival.

Individual strategies can be classified according to their behavioral variation
over time. Some rules follow a passive strategy and invest 100% of their wealth
in the market portfolio at all times. Others adopt an active strategy by always
deviating from the market portfolio. The third group of rules applies a hybrid
strategy: in some periods, they passively buy the market portfolio, while in
others they take some active risk by deviating from the market benchmark.
Figure 6 applies this classification to the observed behavior of investment
strategies. It shows how the proportions of wealth managed by each of these
three sets of rules varies over time. Note that active and passive strategies may
have the potential to change their behavior, even if they did not do so in the

Figure 6. Percentage of wealth managed by different types of price-dependent strategies.
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past, because prices did not take on those values which might trigger their
latent behavior. The classification therefore gives upper limits on the number
of active and passive strategies and provides a lower limit for the number of
hybrid strategies. Figure 6 also supplies information on the market share of
strategies that currently take active positions. This set of strategies consists of
all of the active rules and some of the hybrid rules.

There is considerable variation in the number of hybrid strategies deviating
from the market portfolio investment. In the early rounds, active strategies
gain and passive strategies lose in terms of market shares. After approximately
100,000 iterations, there is a steep increase in the market share of hybrid strate-
gies. This occurs because a few rules, which were previously classified as active,
bought the market portfolio for the first time during a short period of severe
mispricing. This is mainly due to price dynamics because, as discussed in detail
below, strategies typically have a ‘‘trigger,’’ which induces a switch from passive
to active investment behavior if prices enter a certain region of the price space.

Other large jumps in the distribution of strategy types (at 130,000, 165,000
and 200,000) are preceded by periods of unusually high volatility, and large
deviations from the Kelly rule. This typically occurs when some extremely
risky (e.g., under-diversified) strategy experiences a streak of good luck and
becomes wealthy enough to have some market impact before it eventually
goes bankrupt. For normal levels of price volatility, the presence of passive
strategies amplifies its market impact and contributes to the volatility. For high
levels of volatility, information about past prices gives imprecise information
about the current market portfolio. This increases the risk for those strategies
that rely heavily on price information. The gains and losses incurred may
change the wealth distribution, alter the aggregate behavior and cause relative
prices to settle down at new levels. The sharp decline around period 165,000
in the market share of currently active strategies is triggered by a change in
relative price levels, following a volatility shock of the type just described.
Figure 6 indicates that the main part of this decline can be attributed to hybrid
strategies, which change their mode of behavior from active to passive.

In order to investigate the mechanism which causes this shift in behavior, we
provide a detailed analysis of one specific strategy from the experiment—the
wealthiest strategy at the last iteration of the experiment. This strategy,
denoted λLW(s, p), is present in the population for more than the last 150,000
iterations. Because the portfolio weights of λLW are a function of the state s

and the vector of relative prices p = (p1, p2, p3), the rule is therefore of the
hybrid type. In states 1 and 2, behavior remains passive throughout, but in
state 3, it switches between active and passive modes. Figure 7 summarizes its
behavior in state 3. In the remainder of this section, we fix s = 3 and refer to
λLW(s, p) and λ∗(s) as λLW(p) and λ∗, respectively.

Figure 7 is a contour plot of the distance between the market portfolio and
the portfolio weights of strategy λLW in state 3. Market portfolios, which
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Figure 7. Contour plot of δ(p) := ‖λLW (p) − p‖ for relative prices p = (p1, p2, p3) in
the unit simplex. δ(p) is the Euclidean distance between the market portfolio p and the
portfolio weights of strategy λLW in state 3. Darker areas represent larger values of δ(p),
and white areas represent those prices for which λLW is in perfect agreement with the
market portfolio, i.e., δ(p) = 0. Kelly prices and Kelly portfolio weights are given by
λ∗ = (0.2, 0.1, 0.7).

coincide with vectors of relative prices, are represented as points in the unit
simplex. The point λ∗ = (0.2, 0.1, 0.7) is the Kelly benchmark portfolio in
state 3 (see Table III). For each price vector p = (p1, p2, p3), λLW(p) are the
portfolio weights of strategy λLW , and δ(p) := ‖λLW(p) − p‖ is the Euclidean
distance between these two. In the figure, darker shadings corresponds with
higher values of δ(p).

Strategy λLW is in the passive mode (P ) in a subset of the simplex that
consists of two parts: (1) the line segment defined by all price vectors p with
p2 = λ∗

2 = 0.1 and (2) the white triangular area along the north-east border
of the simplex, which corresponds with low prices for Asset 1. The remaining
area of the simplex constitutes the active mode (A). The switch between active
and passive modes is triggered by low prices of Asset 1. The functional form
of strategy λLW in the two modes is given by

λLW(p) =
{

(1 − λ∗
2 − ε(p2))

(
p1

p1+p3
,

λ∗
2+ε(p2)

1−λ∗
2−ε(p2)

,
p3

p1+p3

)
if p ∈ A;

(p1, p2, p3) if p ∈ P .
(9)

The function ε(p2) is convex with values ε(0) = 0.008, ε(λ∗
2) = 0.000 and

ε(1) = −0.016.
In the active mode, strategy λLW chooses a portfolio weight of Asset 2

that is close to the Kelly benchmark. For p2 �= λ∗
2, function ε(·) provides

an enhancement which amounts to small long or short positions in Asset 2
according to whether this asset is cheap or expensive relative to its Kelly
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benchmark. The deviation from the Kelly weight λ∗
2 is of the magnitude 10%.

The remaining wealth is invested in the other two assets according to their price
ratio, i.e., in the corresponding market portfolio of Assets 1 and 3. Strategy
λLW is discontinuous on the border between active and passive modes (which
marks the switch to passive investment for low prices of Asset 1), except
along the line segment where p2 = λ∗

2. However, Equation (9) reveals that the
discontinuities match up to maintain equal ratios of portfolio weights and
market prices for Assets 1 and 3.

The long-lived strategy λLW is specialized in the sense that it only takes
active positions in one particular asset and in one particular state; otherwise it
is passive and buys the market portfolio. A careful analysis of other wealthy
investment strategies shows that most of them have exactly the same structure.
They exploit mispricing in a nearly identical fashion to the strategy studied
in detail above, though for a different asset and a different state. In other
situations, they are passive and buy the market portfolio.

In our Darwinian model, the tournament process punishes investors with
low wealth by a high probability of deletion. Avoiding severe losses is therefore
important for survival, a goal that can be achieved by investing part of one’s
wealth in the market portfolio. Moreover, the logarithm of strategy λLW ’s
return has a smaller variance than the Kelly rule for about 80% of the time in
the runs reported in Figures 5 and 6. The genetic recombination process favors
this type of prudent investment behavior because extinction is more likely for
rules that have a high volatility of returns.

Specializing in active investment under particular circumstances, which
would also make sense from a practical point of view, stems from the
genetic process that distributes trading skills across the population. The basic
building blocks, which embody particular specialization, spread throughout
the population of behavior rules. It is extremely unlikely, however, to have
them all combined in one single rule, due to the random nature of genetic
recombination in the tournament process and the lack of individual learning.
Though complete knowledge is embodied in the population, this precludes the
birth of a ‘super trader.’ Even though successful investors are more cautious
when strategies are price- rather than just state-dependent, convergence to
the Kelly rule prevails because of the push from the population’s aggregate
behavior towards the equilibrium prediction.

5. Conclusion

In this paper, we studied an evolutionary model of a financial market with
short-lived assets, which comprises the two Darwinian processes of selection
and reproduction. The framework generalizes an evolutionary finance model
by applying a genetic programming approach to the creation of variety and
the dynamics of investment behavior. The well-known Kelly rule serves as the
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benchmark for optimal investment and asset prices. Our findings fully confirm
the predictions derived from the analytic results in models that neglect the
reproductive process which generates diverse behavior. In all experiments, the
long-run outcome shows the emergence of investment styles and market prices
in line with the Kelly rule. When price information is available in addition
to information about the current state, strategies make sophisticated use of
the data by employing the price information to invest part of their wealth in
the market portfolio. This wide-spread behavior provides protection against
severe losses and increases the chance of survival of the corresponding genetic
material. The combination of this type of investment behavior with small bets
on the Kelly rule eventually drives market prices to the Kelly benchmark.

References

Algoet, P. H. and Cover, T. M. (1988) Asymptotic optimality and asymptotic equipartition
properties of log-optimum investment, Annals of Probability 16, 876–898.
Allen, F. and Karjalainen, R. (1999) Using genetic algorithms to find technical trading rules,
Journal of Financial Economics 51, 245–271.
Amir, R., Evstigneev, I. V., Hens, T., and Schenk-Hoppé, K. R. (2005) Market selection and
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