
Evaluating Lehman’s Laws of Software Evolution

within Software Product Lines: A Preliminary
Empirical Study

Raphael Pereira de Oliveira1,2, Eduardo Santana de Almeida1,
and Gecynalda Soares da Silva Gomes1

1 Federal University of Bahia, Campus Ondina
Av. Adhemar de Barros, s/n, 40.170-110, Salvador - Bahia, Brazil

2 Federal Institute of Sergipe, Campus Estância
Rua Presidente João Café Filho, S/N, Estância - Sergipe, Brazil
{raphaeloliveira,esa}@dcc.ufba.br, gecynalda@yahoo.com

Abstract. The evolution of a single system is a task where we deal with
the modification of a single product. Lehman’s laws of software evolution
were broadly evaluated within this type of systems and the results shown
that these single systems evolve according to his stated laws over time.
However, when dealing with Software Product Lines (SPL), we need to
deal with the modification of several products which include common,
variable and product specific assets. Because of the several assets within
SPL, each stated law may have a different behavior for each asset kind.
Nonetheless, we do not know if the stated laws are still valid for SPL since
they were not yet evaluated in this context. Thus, this paper details an
empirical investigation where four of the Lehman’s Laws (LL) of Software
Evolution were used in an SPL industrial project to understand how the
SPL assets evolve over time. This project relates to an application in
the medical domain developed in a medium-size company in Brazil. It
contains 45 modules and a total of 70.652 bug requests in the tracking
system, gathered along the past 10 years. We employed two techniques -
the KPSS Test and linear regression analysis, to assess the relationship
between LL and SPL assets. Finally, results showed that three laws were
supported based on the data employed (continuous change, increasing
complexity, and declining quality). The other law (continuing growth)
was partly supported, depending on the SPL evaluated asset (common,
variable or product-specific).

Keywords: Software Product Lines, Software Evolution, Lehman’s
Laws of Software Evolution, Empirical Study.

1 Introduction

Software evolution is a very important activity where the software must have
the ability to adapt according to the environment or user needs, to keep its
satisfactory performance, [1] given that if a system does not support changes, it
will gradually lapse into uselessness [2].

I. Schaefer and I. Stamelos (Eds.): ICSR 2015, LNCS 8919, pp. 42–57, 2014.
c© Springer International Publishing Switzerland 2014



Evaluating Lehman’s Laws of Software Evolution 43

Back in the 1970s, Meir Lehman started to formulate his laws of software
evolution, after realizing the need for software systems to evolve. These laws,
shown in Table 1, stressed that a system needed to evolve due to its requirement
to operate in or address a problem or activity in the real world, what Lehman
called E-type Software.

According to Barry et al. [3], these laws can be ordered into three broad
categories: (i) laws about the evolution of software system characteristics; (ii)
laws referring to organizational or economic constraints on software evolution;
and (iii) meta-laws of software evolution. However, the laws were evaluated in
the context of single systems.

Table 1. Lehman’s Laws of Software Evolution [4]

Software Evolution Laws Description

Evolution of Software System Characteristics (ESSC)
(1974) Continuous change E-type systems must be continually adapted else

they become progressively less satisfactory.
(1980) Continuing growth The functional content of an E-type system must

be continually increased to maintain user satisfac-
tion with the system over its lifetime.

(1974) Increasing complexity As an E-type system evolves, its complexity in-
creases unless work is done to maintain or reduce
it.

(1996) Declining quality Stakeholders will perceive an E-type system to
have declining quality unless it is rigorously main-
tained and adapted to its changing operational
environment.

Organizational/Economic Resource Constraints (OERC)
(1980) Conservation of familiarity During the active life of an evolving E-type sys-

tem, the average content of successive releases is
invariant.

(1980) Conservation of organiza-
tional stability

The average effective global activity rate in an
evolving E-type system is invariant over a prod-
ucts lifetime.

Meta-Laws (ML)
(1974) Self regulation The evolution process of E-type systems is self

regulating, with a distribution of product and pro-
cess measures over time that is close to normal.

(1996) Feedback System The evolution processes in E-type systems consti-
tute multi-level, multi-loop, multi-agent feedback
systems and must be treated as such to achieve
significant improvement over any reasonable base-
line.



44 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

In contrast to single systems, a Software Product Line (SPL) represents a set
of systems sharing a common, managed set of features that satisfy the specific
needs of a particular market or mission. The products which compose an SPL
are developed from a common set of core assets in a prescribed way [5], aiming
to achieve benefits such as large scale reuse, reduced time to market, improved
quality and minimized costs, large-scale productivity, maintain market presence,
enable mass customization, and so on [5] [6].

In order to achieve the above mentioned benefits, an SPL’s evolution needs
special attention, since the sources of SPL changes can be targeted to the entire
product line (affecting common assets), targeted to some products (affecting
variable assets), or targeted to an individual product (affecting product-specific
assets) [7] [8] [9].

In this study, our objective is to examine whether Lehman’s Laws (LL) are
reflected in the development of SPLs, where common, variable and product spe-
cific assets are built. The hypothesis we put forward is that there is a relationship
between LL of Software Evolution and the software evolution in SPL environ-
ments. In this context, in order to understand whether there is a relationship
between the LL of software evolution and the SPL evolution process, we carried
out an empirical investigation in an industrial software product line project. As
a preliminary study, we selected the first group of laws (Evolution of Software
System Characteristics - ESSC, which includes the Continuous change, Contin-
uing growth, Increasing complexity and Declining quality laws) to perform our
evaluation. We evaluated each one of the laws from the ESSC group for common,
variable and product-specific assets in the context of an industrial SPL. To the
best of our knowledge, this is the first study stating that most of evaluated LL
of software evolution can be applied in the context of SPL. Thus, results of this
study can help in understanding and improving SPL evolution process.

The remainder of this paper is organized as follows: Section 2 presents related
work and uses it as context to position this work. Section 3 describes the empir-
ical investigation, followed by the discussion of key findings and contributions
from our preliminary empirical study in Section 4. Finally, Section 5 presents
the conclusions and future directions.

2 Related Work

Since the publication of Lehman’s work on software changes, other researchers
have investigated his laws within the context of open source and industrial
projects. Israeli and Feitelson [10] examined Lehman’s Laws (LL) within the
context of the Linux kernel. They selected the Linux kernel because of its 14
years data recording history about the system’s evolution, which includes 810
versions. Only two out of the eight laws were not supported in this experiment
(i.e., self-regulation and feedback system). Barry et al. [3] also investigated LL;
however within the context of industrial projects. They proposed some metrics
as dependent variables, which were also related to six LL (the self-regulation and
the feedback system laws were not investigated in this study). We have adapted



Evaluating Lehman’s Laws of Software Evolution 45

some of the metrics proposed by Barry et al. [3] to support and evaluate the LL
in an industrial SPL project.

Lotufo et al. [11] studied the evolution of the Linux kernel variability model.
This model is responsible for describing features and configurations from the
Linux kernel. They found that the feature model grows together with the code.
Besides the growth of the number of features, the complexity still remains the
same. Most of the evolution activity is related to adding new features and there is
a necessity for tool support, mainly regarding constraints. Their results showed
that evolving large variability models is feasible and does not necessarily deteri-
orate the quality of the model. Godfrey and Tu [12] found a similar conclusion
after studying the evolution of the Linux kernel. They explored the evolution
of the Linux kernel both at the system level and within the major subsystems
and found out that the Linux has been growing in a super-linear rate over the
years. However, as will be detailed later, within the context of our study we
found a different behavior. The complexity within the assets has grown over the
years and the quality has decreased. It is important to notice that the number of
maintainers in a private context is smaller compared to maintainers of the Linux
kernel and also the time-to-market pressure in a private context influences the
overall software product quality.

Xie et al. [13] also investigated LL by studying 7 open source applications
written in C and several laws were confirmed in their experiment. Their analysis
covered 653 releases in total and sum 69 years of software evolution including
the 7 applications. According to the authors, the definition of the increasing
complexity and declining quality laws may lead to misinterpretations, and the
laws could be supported or rejected, depending on the interpretation of the law
definition. In our study, to avoid this misinterpretation, we consider that the
increasing of complexity and the declining of quality must happen to support
these laws.

The investigations assessing LL available in the literature are related to sin-
gle systems and not to SPL. In our empirical study, we evaluated four laws of
software evolution (ESSC group of laws) in an SPL industrial project, which can
be considered as a first work in this direction. This project has a long history of
data with more than 10 years of evolution records, as many of the related work.
Nevertheless, it is a private system developed using the SPL paradigm, allowing
the evaluation of the laws for the common, variable and product-specific assets.

3 Empirical Study

This empirical study focuses on investigating the relationship between LL (ESSC
group of laws) of software evolution and the common, variable and product-
specific assets, based on data from an industrial SPL project.

The industrial SPL project, used as basis for the investigation described
herein, has been conducted in partnership with a company located in Brazil,
which develops for more than 10 years strategic and operational solutions for
hospitals, clinics, labs and private doctor offices. This company has ∼ 50



46 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

employees, of which six are SPL developers with a range of 4 to 19 years of
experience in software development.

The company builds products within the scope of four main areas (hospi-
tals, clinics, labs and private doctor offices). Such products comprise 45 modules
altogether, targeting at specific functions (e.g., financial, inventory control, nu-
tritional control, home care, nursing, and medical assistance). Market trends,
technical constraints and competitiveness motivated the company to migrate
their products from a single-system development to an SPL approach. Within
SPL, the company was able to deliver its common, variable and product-specific
assets. To keep the company name confidential, it will be called Medical Com-
pany (MC). During the investigation, MC allowed full access to its code and bug
tracking system.

Regarding the bug tracking system, we collected a total of 70.652 requests over
10 years, allowing an in-depth statistical data analysis. MC uses a bug tracking
system called Customer Interaction Center (CIC), which was internally devel-
oped. CIC allows MC’s users to register requests for adaptations, enhancements,
corrections and also requests for the creation of new modules.

The empirical study presented herein was planned and executed according to
Jedlitschka et al.’s guidelines [14].

3.1 Planning

All the products at MC have some assets (called modules) in common (com-
monalities), some variable assets (variabilities) and also some specific assets
(product-specific), enabling the creation of specific products depending on the
combination of the selected assets.

Figure 1 shows the division of modules between the areas supported by MC.
Four (4) modules represent the commonalities of the MC SPL, twenty-nine (29)
modules represent the variabilities of the MC SPL and, twelve (12) modules
represent the product-specific assets, totaling forty-five (45) modules in the MC
SPL.

Based on those modules, some of the laws could be evaluated with the records
from CIC. However, other ones required the LOC of these modules. From CIC
and LOC, we collected data since 1997. Nevertheless, data related to the three
types of maintenance (adaptive, corrective and perfective) just started to appear
in 2003.

The GQM approach [15] was used to state the goal of this empirical study, as
follows: the goal of this empirical study is to analyze Lehman’s Laws of Software
Evolution (ESSC group of laws) for the purpose of evaluation with respect to
its validity from the point of view of the researcher in the context of an SPL
industrial project. Based on the stated Goal, the following research questions
were defined:

RQ1.) Is there a relationship between the Continuous Change law and the evo-
lution of common, variable and product-specific assets?

RQ2.) Is there a relationship between the Continuous Growth law and the evo-
lution of common, variable and product-specific assets?



Evaluating Lehman’s Laws of Software Evolution 47

Fig. 1. Modules (assets) per Areas Supported by MC

RQ3.) Is there a relationship between the Increasing Complexity law and the
evolution of common, variable and product-specific assets?

RQ4.) Is there a relationship between the Declining Quality law and the evolu-
tion of common, variable and product-specific assets?

The term relationship used in the RQs seeks for evidences of each evaluated
law in the SPL common, variable, and product specific assets. In order to answer
those questions, some metrics were defined. Since the SPL literature does not
provide clear metrics directly associated to the laws, the metrics extracted from
Barry et al. [3], Xie et a. [13], Kemerer and Slaughter [16], and Lehman et al.
[17] were used herein. Barry et al. defined some dependent variables and some
metrics for measuring each dependent variable. Based on their work, in order
to evaluate each LL of software evolution, we have adapted the relationship
among laws, dependent variables and the measurements (as shown in Table 2),
according to the available data in the private industrial environment. Moreover,
instead of using the Cyclomatic Complexity [18] as in Barry’s work, we decided
to use the LOC metric, since LOC and Cyclomatic Complexity are found to be
strongly correlated [19].

For each one of the dependent variables, we have stated one null and one
alternative hypothesis. The hypotheses for the empirical study are shown next:

H0 : There is no growth trend in the data during the years (Stationary);
H1 : There is a growth trend in the data during the years (Trend);

To corroborate Lehman’s Laws of Software Evolution, Continuous Change,
Continuous Growth, Increasing Complexity and Declining Quality, we must re-
ject H0. Thus, if there is a trend of growth in the data during the years, there
is evidence to support these four laws.

The next subsection describes how the data were collected and grouped to
allow the evaluation of the defined hypotheses.



48 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

Table 2. Relationship among Laws, Dependent Variables and Measurement

Law Dependent
Variable

Acronym Measurement

Continuous
change

Number of
Activities

NA Count of corrective, adaptive and perfective re-
quests per year [3]

Continuous
growth

Lines Of
Code

LOC Number of lines of code of modules per year
[13]

Increasing
complexity

Number of
Corrections
per LOC

NCLOC Total of correction requests divided by LOC
of modules per year (adapted from [16])

Declining
quality

Number of
Corrections
per Module

NCM Total correction requests divided by the num-
ber of modules per year [3]

3.2 Execution

The object of this study was the MC SPL. To collect the necessary data (from
source code and the bug tracking system), we defined an approach composed
of three steps. In the first step, we were able to collect data from Customer
Interaction Center (CIC), in the second one we collected LOC data and at the
third step, MC clarified some doubts, through interviews, that we had about the
collected data.

After collecting all the data, we started to group them according to an CIC
filed. When registering a new request at CIC, the user must fill a field called
request type. Based on this request type, the records from CIC were grouped
according to the types of maintenance [20] [21]. The records were grouped in
three types of maintenance, according to Table 3.

It was possible to relate each request from the bug tracking system to either
adaptive, corrective or perfective maintenance since each request has a field
for its type, and each type is related to a maintenance type. The preventive
maintenance type was not used because none of the records corresponded to this
type. We also show other records not related to maintenance types from CIC,
since MC also use CIC to register management information. These other records
had a null request type field or their request type field was related to commercial
proposals, visiting requests or training requests. Thus, they were not used in the
analysis. We found a total of 70.652 requests in the CIC system.

Based on this classification and the LOC, we were able to investigate each
dependent variable and also perform the statistical analysis as discussed in the
next section.

3.3 Data Analysis and Discussion

For analyzing the evolution at MC, in the first step, we collected data re-
lated to all assets and we did not distinguish common, variable and product-
specific records. This step can be seen in each graph from Appendix A as the



Evaluating Lehman’s Laws of Software Evolution 49

Table 3. Maintenance Types Groups

Maintenance
Type

Request Type in CIC Total of
Records

Adaptive Reports and System Adaptation Request 22,005

Corrective System Error, Database Error, Operating System Error,
Error Message of type General Fail in the System, Error
Message (Text in English) and System Locking / Freezing

14,980

Perfective Comments, Suggestions and Slow System 2,366

Other Doubts, Marketing - Shipping Material, Marketing Pre-
sentation, Marketing Proposal, Marketing Negotiation,
Training and Visit Request

31,301

Total line. As our objective was to evaluate the evolution in software prod-
uct lines, we grouped the records into commonalities, variabilities and product-
specific, facilitating the understanding of the evolution at MC.

The period in which the data were collected was not the same to evaluated
the laws. The continuous growth law was evaluated using data from the period
between 1997 and 2011. The other laws (continuous change, increasing complex-
ity, and declining quality) were evaluated using data from the period between
2003 and 2011.

In order to evaluate the hypotheses we applied the KPSS Test [22]. This test
is used to test a null hypothesis for an observable time series. If the series is
stationary, then we do not reject the null hypothesis. Otherwise, if the series has
a trend, we reject the null hypothesis. In this study, the level of confidence used
was 5% (p-value). We could evaluate all assets (common, variable and product-
specific) for all the laws using this statistical test.

We applied also a linear regression analysis [23] to the collected data to evalu-
ate the variance between the assets of the SPL at MC (see Appendix B). Through
this variance, we could understand which assets evolve more and should receive
more attention. We have checked the variance (Y = β0+β1X) for each dependent
variable and for each asset (Common = comm, Variable = var, Product-Specific
= ps) of the SPL.

The descriptive statistics analysis and the discussion of the empirical study
results are shown next grouped by each research question.

RQ1.) Is there a relationship between the Continuous Change law and the evo-
lution of common, variable and product-specific assets?

For this law, the number of activities (adaptive, corrective and perfective) regis-
tered in CIC from January 2003 up to December 2011 were used, corresponding
to the Number of Activities dependent variable as shown on Appendix A(a).
The plot shows a growth for the commonalities and variabilities, however, for
the product-specific activities a small decrease can be noticed for the last years.
The number of activities related to the variabilities are greater than the activi-
ties related to the commonalities. For the product-specific activities, as expected,



50 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

there is a smaller number of activities, since it corresponds to the small group
of assets from the MC SPL.

Besides the small decrease for product-specific assets activities for the last
years, we could identify a trend of growing in the number of activities for all as-
sets (common, variable and product-specific) by applying the KPSS Test. Based
on the confidence intervals analysis, Appendix B(a) indicates that the different
assets from the SPL have different amounts of activities. The number of activ-
ities related to the variabilities are bigger in the SPL because “variability has
to undergo continual and timely change, or a product family will risk losing the
ability to effectively exploit the similarities of its members” [24].

RQ2.) Is there a relationship between the Continuous Growth law and the evo-
lution of common, variable and product-specific assets?

Regarding this law, it was possible to identify similar behaviors for each of
the SPL assets. Appendix A(b) shows the lines of code from 1997 up to 2011,
corresponding to the Lines Of Code dependent variable. For common, variable
and product-specific assets, we can observe a tendency to stabilization over the
years. They grow at a high level in the first years, but they tend to stabilize over
the next years.

Due to the growth in the number of activities for common and variable assets
according to the Continuous Change law, these activities had an impact on the
LOCs. By using the KPSS Test, the commonalities and variabilities showed a
trend of increasing. Despite the continuous change observed for the commonali-
ties and variabilities in the SPL, MC does not worry about keeping the size of its
common and variable assets stable, contributing with the increase of complexity.

For the product-specific assets, the KPSS Test showed a stationary behavior.
Therefore, the Continuos Growth law to the product-specific assets is rejected.
This happens because similar functions among the product-specific assets are
moved to the core asset of the SPL [25].

Moreover, through the confidence intervals analysis, Appendix B(b) shows
that the variabilities from the SPL have more LOC than other assets. This
could be one of the reasons why variabilities have more activities (Continuous
Change).

RQ3.) Is there a relationship between the Increasing Complexity law and the
evolution of common, variable and product-specific assets?

The total number of corrections per line of code, corresponding to the Number
of Corrections per LOC dependent variable is shown in Appendix A(c). As it
can be seen, the complexity for commonalities, variabilities and product-specific
assets is increasing up to 2007. This increase was bigger for the commonalities
because at that time MC had to evolve the SPL to support new government
laws. However, variable and product-specific assets have also grown up to 2007,
since modifications within common assets also had an impact on variable and
product-specific assets [7] [8] [9]. After 2007, MC started to try to reduce the
complexity and prevent the system from breaking down.



Evaluating Lehman’s Laws of Software Evolution 51

However, we could also identify a trend of growing in the complexity for the
commonalities, variabilities and product-specific assets by applying the KPSS
Test in the Increasing Complexity law. Hence, considering that the complexity
is always growing, the Increasing Complexity law is supported for all the assets
in the SPL at MC.

Confidence intervals analysis (see Appendix B(c)) indicates that the com-
plexity inside the commonalities raises more than inside other assets. It happens
because the commonalities have to support all the common assets from the prod-
ucts of the SPL and any change can affect the entire product line [7] [8] [9] [26].

RQ4.) Is there a relationship between the Declining Quality law and the evolu-
tion of common, variable and product-specific assets?

The number of corrections per total of modules in the year, corresponding to
the Number of Corrections per Module dependent variable, is shown in Appendix
A(d). The number of corrections for the variabilities and for the specific assets
follow almost the same pattern. However, for the common assets of the product
line, we can notice a higher number of corrections per module in 2007, also caused
by the adaptation of the system to the government laws. A small increase in the
variabilities and in the specific assets also can be observed in the same year.
From 2007, the number of corrections per module starts to decrease because of
the feedback from users and corrections of problems related to the evolution to
deal with the new government laws.

Besides the decrease after 2007, a trend of growing in the number of corrections
per modules could be identified for the commonalities, variabilities and product-
specific assets by using the KPSS Test. Hence, considering that the number of
corrections per module is always growing, the Declining Quality law is supported
for all the assets in the SPL at MC.

Based on the confidence intervals analysis, Appendix B(d), we could conclude
that the number of corrections per module inside the commonalities is bigger
than the other assets. As stated for commonalities the increasing complexity law,
this happens because the commonalities have to support all the common assets
from the products of the SPL and any change can affect the entire product line
[7] [8] [9] [26].

The results of the KPSS test are shown in Appendix C. The next section
discusses the threats to validity of the empirical study.

3.4 Threats to Validity

There are some threats to the validity of our study. They are described and
detailed as follows.

External Validity threats concern the generalization of our findings. In the
analyzed medical domain, government laws are published constantly. This may
affect the generalizability of the study since those laws affect both common,
variable and product-specific assets. Hence, it is not possible to generalize the
results to other domains, however, the results maybe considered to be valid in
the medical domain.



52 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

This empirical study was performed in just one company and only one SPL
was analysed. Thus, it needs a broader evaluation in order to try to generalize
the results. However, this was the first study in this direction evaluating each of
the four laws of software evolution (ESSC group of laws) in an SPL industrial
company with more than 10 years of historical data, which is not always available
for researchers.

Internal Validity threats concern factors that can influence our observa-
tions. The period in which the data were collected was not the same. We evalu-
ated some laws using the period between 1997 and 2011. Others were evaluated
using the period between 2003 and 2011. Also, the requests from the bug track-
ing system were used in the same way no matter of their quality, duplication or
rejected requests. Nevertheless, the available data period is meaningful because
it is an industrial SPL project and both periods can be considered long periods,
where statistical methods could be successfully applied.

Construct Validity threats concern the relationship between theory and
observation. The metrics used in this study may not be the best ones to evaluate
some of the laws, considering that there is no baseline for those metrics applied
to SPL. However, metrics used to evaluate Lehman’s laws of software evolution
in previous studies were the basis for our work. For some metrics, we based
on LOC. Even though LOC can be considered a simplistic method, LOC and
Cyclomatic Complexity are found to be strongly correlated [19], thus we decided
to use LOC since MC had this information previously available.

4 Key Findings and Contributions for SPL Community

In this section, we present the key findings and also discuss what is the impact
of each finding for industrial SPL practitioners, according to each law.

a. Continuous Change Law. Finding: Variable assets are responsible for the
greater number of activities performed in the SPL project. Practitioners
should be aware of making modifications within those assets, since there
are several constraints among them. Also we could realize that the number
of product-specific activities decreases starting 2007 while the number of
activities on common and variable assets increases. It could be that there
are so many activities on the variable and common assets (compared to the
product-specific assets) because their scope has not been chosen well (or has
changed significantly in 2007), implying that more and more specifics assets
have to be integrated into commonalities. This would be a typical product
line behavior. Also, another reason for increasing the number of activities on
common and variable assets is that in SPL more attention is by definition
given to the commonalities and variabilities for the sake of reuse.

b. Continuous Growth Law. Finding:Variable assets had also the biggest growth
in LOCs during the years. Practitioners should search, among the variable
assets, those that share behavior and can be transformed into common assets.
Transforming variable assets into common assets will reduce the total growth



Evaluating Lehman’s Laws of Software Evolution 53

of variable assets and also it will reduce their complexity. However, within
this study, the transition from variability to commonality does not happen
at all, however, it should happen. For example, when a variability is been
used in almost all the products of the SPL.

c. Increasing Complexity Law. Finding: Complexity within common assets is
bigger that for other assets. Practitioners should be aware of complexity in
common assets since they have to support all the products from the SPL
[26]. This makes any kind of change in common assets to be considered as
critical, since they may affect the whole SPL.

d. Declining Quality Law. Findings : The number of corrections per modules
were higher for common assets. In fact, for this empirical study we also have
to consider the number of maintainers at MC, which was a small number
and maybe they were overload with work and left behind quality issues. In a
further study, we will check if there is any relationship between complexity
and quality, because in this study, higher complexity is related with poor
quality.

Based on the results of this empirical study, we propose the following initial
items to improve the evolution within SPLs:

. Creation of guidelines for evolving each SPL artifact. Guidelines supporting
evolution steps for SPL artifact should exist to systematize the evolution
of common, variable and product-specific assets. These guidelines should
consider why, when, where and how the SPL assets evolve.

. For each evolution task, keep constant or better the quality of the SPL. Mea-
surements within the SPL common, variable and product-specific assets (in-
cluding requirements, architecture, code, and so on) should be part of the
SPL evolution process.

. For each evolution task, try to decrease the complexity of the SPL. After
evolving the SPL code, measurements should be applied to check if the new
change in the code increases or not the complexity of the SPL;

These are some improvements that can be followed according to the findings
of the empirical study at MC. Next Section presents our conclusions and future
work.

5 Conclusions and Future Work

Lehman’s Laws of Software Evolution were published in the seventies and still are
evaluated in recent environments, such as the one used in this empirical study.
From this empirical study, commonalities, variabilities and product-specific as-
sets seems to behave differently regarding evolution. Three laws were completely
supported (continuous change, increasing complexity and declining quality) in
this empirical study. The other law (continuous growth) was partly supported,
depending on the SPL asset in question.



54 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

According to this study, all assets from the SPL industrial project are chang-
ing over the time. However, there is an increasing of complexity and a decrease
of quality during the years. Changes in all assets will always happen, therefore,
dealing with the complexity and quality in evolving an SPL needs special atten-
tion. To deal with the declining quality and increase complexity during the SPL
evolution, we intend to propose guidelines. These guidelines will help during the
whole SPL evolution starting from the SPL requirements up to the SPL tests.

This empirical study within an industrial SPL project was important to reveal
findings not confirmed within open source projects where the complexity keeps
the same, the quality is not deteriorated [11] and system grows in a super-linear
rate [12].

As future work, we would like to confirm if those laws (Continuous Change,
Increasing Complexity, Declining Quality) also happen for other industrial SPL
projects. Moreover, we would like to have more insights about the reason why
continuous growth law is not supported to product-specific assets. In our opinion,
we believe that the LL are also applicable in the SPL context, since most of the
laws could be confirmed for most of the SPL assets (eleven at the total).

In addition, we would like to confirm some findings from this empirical study,
such as: to confirm if the number of activities and LOC for variable assets are big-
ger than for other assets; investigate if the commonalities have a higher number
of corrections related to other assets and; check if there is any relationship be-
tween complexity and quality, because in this study, higher complexity is related
with poor quality. Hence, we intend to replicate this study in another company
using SPL. For replicating this empirical study, any kind of bug tracking sys-
tem can be used, since the replicated empirical study can use the same research
questions, metrics, hypotheses and statistical methods. After synthesizing the re-
sults from both empirical studies, we will try to elaborate some insights of how
Lehman’s laws of software evolution occur in the SPL environment and pro-
pose some guidelines to the SPL evolution process. Based on these guidelines, it
will be possible to evolve each SPL asset (common, variable or product-specific)
according to its level of complexity, growth and desired quality.

Acknowledgement. This work was partially supported by the National In-
stitute of Science and Technology for Software Engineering (INES1), funded by
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08 and CNPq
grants 305968/2010-6, 559997/2010-8, 474766/2010-1 and FAPESB. The authors
also appreciate the value-adding work of all reviewers of this paper and some
colleagues: Silvia Abrahão, Emilio Insfrán, and Emilia Mendes who made great
contributions to the current work.

1 INES - http://www.ines.org.br

http://www.ines.org.br


Evaluating Lehman’s Laws of Software Evolution 55

Appendix A. Plotted Graphs from CIC data and LOC

 
,&

!#
('

$
"*
-%
*#

)

(a) Number of Activities

 $
%"
'&

#
&!

"

(b) Lines of Code per Year

7

747779

74777;

74777=

74777?

74778

747789

74778;

97
7:

97
7;

97
7<

97
7=

97
7>

97
7?

97
7@

97
87

97
88

.,,.-$+*13 #$0*$%*+*13  0.'2&1 !/(&*)& ".1$+

(c) Corrections / LOC per Year

7477

<7477

877477

8<7477

977477

9<7477

:77477

:<7477

;77477

;<7477

977: 977; 977< 977= 977> 977? 977@ 9787 9788

&'
'#
!)
&%

(-
 
&"

+$
#(

.,,.-$+*13 #$0*$%*+*13  0.'2&1 !/(&*)& ".1$+

(d) Number of Corrections per
Module

Appendix B. Confidence Intervals (Regression Coefficients)

-

.--

/--

0--

1--

2--

3--

"&#$+ "&%% "&#$+ *!( "&#$+ ')

(a) NA (b) LOC

(c) NCLOC (d) NCM



56 R.P. de Oliveira, E.S. de Almeida, and G.S. da Silva Gomes

Appendix C. KPSS Test and Hypotheses Results

Variable Commonalities Variabilities Product-Specific
KPSS Test p-value Decision KPSS Test p-value Decision KPSS Test p-value Decision

NA 0.1651 0.0341 Reject H0 0.2187 0.0100 Reject H0 0.1979 0.0168 Reject H0

LOC 0.2125 0.0113 Reject H0 0.2400 0.0100 Reject H0 0.1354 0.0697 Do Not Reject H0

NCLOC 0.1856 0.0214 Reject H0 0.2252 0.0100 Reject H0 0.1764 0.0249 Reject H0

NCM 0.1856 0.0214 Reject H0 0.2274 0.0100 Reject H0 0.1799 0.0236 Reject H0

H0: Stationary; H1: Trend. The gray shading represents the supported laws/assets for
this empirical study.

References

1. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)
2. Lehman, M.: Programs, life cycles, and laws of software evolution. Journal Pro-

ceedings of the IEEE 68, 1060–1076 (1980)
3. Barry, E.J., Kemerer, C.F., Slaughter, S.A.: How software process automation af-

fects software evolution: A longitudinal empirical analysis: Research articles. Jour-
nal of Software Maintenance and Evolution: Research and Practice 19, 1–31 (2007)

4. Cook, S., Harrison, R., Lehman, M.M., Wernick, P.: Evolution in software systems:
foundations of the SPE classification scheme. Journal of Software Maintenance 18,
1–35 (2006)

5. Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. In:
SEI Series in Software Engineering. Addison-Wesley (2001)

6. Schmid, K.: A comprehensive product line scoping approach and its validation. In:
Proceedings of the 24th International Conference on Software Engineering (ICSE),
pp. 593–603. ACM, New York (2002)

7. Ajila, S., Kaba, A.: Using traceability mechanisms to support software product line
evolution. In: Proceedings of the IEEE International Conference on Information
Reuse and Integration (IRI), pp. 157–162. IEEE (2004)

8. Bailetti, A., Ajila, S., Dumitrescu, R.: Experience report on the effect of market
reposition on product line evolution. In: Proceedings of the IEEE International
Conference on Information Reuse and Integration (IRI), pp. 151–156. IEEE (2004)

9. Svahnberg, M., Bosch, J.: Evolution in software product lines: Two cases. Journal
of Software Maintenance and Evolution: Research and Practice 11, 391–422 (1999)

10. Israeli, A., Feitelson, D.G.: The linux kernel as a case study in software evolution.
Journal of Systems and Software 83, 485–501 (2010)

11. Lotufo, R., She, S., Berger, T., Czarnecki, K., Wa֒sowski, A.: Evolution of the linux
kernel variability model. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287,
pp. 136–150. Springer, Heidelberg (2010)

12. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In: IEEE
International Conference on Software Maintenance (ICSM), pp. 131–142. IEEE
Computer Society, Washington (2000)

13. Xie, G., Chen, J., Neamtiu, I.: Towards a better understanding of software evolu-
tion: An empirical study on open source software. In: IEEE International Confer-
ence on Software Maintenance (ICSM), pp. 51–60. IEEE (2009)



Evaluating Lehman’s Laws of Software Evolution 57

14. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software en-
gineering. In: Shull, F., Singer, J., Sjboerg, D.I.K. (eds.) Guide to Advanced Em-
pirical Software Engineering, pp. 201–228. Springer, London (2008)

15. Marciniak, J.J.: Encyclopedia of Software Engineering. In: Basili, V.R., Caldiera,
G., Rombach, H.D. (eds.) Goal Question Metric Approach 2, pp. 528–532. Wiley-
Interscience, Hoboken (1994)

16. Kemerer, C., Slaughter, S.: An empirical approach to studying software evolution.
Journal IEEE Transactions on Software Engineering (TSE) 25, 493–509 (1999)

17. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics
and laws of software evolution - the nineties view. In: Proceedings of the 4th In-
ternational Symposium on Software Metrics, pp. 20–32. IEEE Computer Society,
Washington (1997)

18. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering
(TSE) 2, 308–320 (1976)

19. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley,
Boston (2002)

20. Gupta, A., Cruzes, D., Shull, F., Conradi, R., Rønneberg, H., Landre, E.: An exam-
ination of change profiles in reusable and non-reusable software systems. Journal
of Software Maintenance and Evolution: Research and Practice 22, 359–380 (2010)

21. Lientz, B.P., Swanson, B.E.: Software Maintenance Management: A Study of the
Maintenance of Computer Application Software in 487 Data Processing Organiza-
tions. Addison-Wesley (1980)

22. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis
of stationarity against the alternative of a unit root: How sure are we that economic
time series have a unit root? Journal of Econometrics 54, 159–178 (1992)

23. Yan, X., Su, X.G.: Linear Regression Analysis: Theory and Computing. World
Scientific Publishing, River Edge (2009)

24. Deelstra, S., Sinnema, M., Nijhuis, J., Bosch, J.: Cosvam: a technique for assess-
ing software variability in software product families. In: 20th IEEE International
Conference on Software Maintenance (ICSM), pp. 458–462. IEEE (2004)

25. Mende, T., Beckwermert, F., Koschke, R., Meier, G.: Supporting the grow-
and-prune model in software product lines evolution using clone detection. In:
12th European Conference on Software Maintenance and Reengineering (CSMR),
pp. 163–172. IEEE (2008)

26. McGregor, J.D.: The evolution of product line assets. Technical Report, Software
Engineering Institute, CMU/SEI-2003-TR-005 (2003)


	Evaluating Lehman's Laws of Software Evolution within Software Product Lines: A Preliminary Empirical Study
	1Introduction
	2 Related Work
	3Empirical Study
	3.1Planning
	3.2Execution
	3.3Data Analysis and Discussion
	3.4Threats to Validity

	4Key Findings and Contributions for SPL Community
	5Conclusions and Future Work


