
Laws of Software E v o l u t i o n R e v i s i t e d

M. M. Lehman

Department of Computing, Imperial College, London SW7 2BZ, UK

A b s t r a c t . Data obtained during a 1968 study of the software process

[8] led to an investigation of the evolution of OS/360 [13] and and, over

a period of twenty years, to formulation of eight Laws o] So]tware Evo-

lution. The FEAST project recently initiated (see sections 4 - 6 below)

is expected to throw additional light on the phenomenology underly-

ing these laws, to increase understanding of them, to explore their finer

detail, to expose their wider relevance and implications and to develop

m e a n s for their beneficial exploitation. This paper is intended to trigger

wider interest in the laws and in the FEAST study of feedback and feed-

back control in the context of the software process and its improvement

to ensure beneficial exploitation of their potential.

1 Historical Background

The first three of a total of now eight laws of software evolution 1 were formulated

in the mid seventies [9] arising from analysis of da ta first acquired during a s tudy

of the IBM programming process [8]. These three were discussed in somewhat

greater detail in 1978 [10]. Two further laws were introduced in a 1980 paper

[11] with the sixth introduced in a footnote [15]. The remaining two have been

discussed in presentations but are published here for the first t ime. All relate

specifically to E-type systems [12] that is, broadly speaking, to software systems

tha t solve a problem or implement a computer application in the real world.

Section 2 restates and briefly discusses the laws stressing, in particular, the

role of process feedback in generating the phenomenology they reflect. This is

followed in section 3 by an equally brief discussion of the use of the te rm laws in

describing the observations from which they were inferred. Section 4 introduces

the FEAST project, the concepts and observations on which it is based and

outlines the planned, now funded F EAS T/ 1 investigation relating it to a broader

long term, multi-disciplinary collaborative investigation which must follow.

2 T h e Laws

2.1 I - - C o n t i n u i n g C h a n g e

An E-type program that is used must be continually adapted else it becomes pro-

gressively less satisfactory.

1 Numbered in order of formulation and publication. Over the years the names and

detailed wording of some of the laws have been modified but the underlying under-

standing they reflect has remained essentially the same

109

This law is in accord with universal experience. It suggests that the growth of

an E-type software system is in some ways akin to that of an organism. It result,

however, from feedback pressures caused by mismatch between the software and

its operational domain, whereas that of biological organisms results primarily

from pressures within the organism itself.

This need for continuing adaptation and evolution is intrinsic to E-type appli-

cations and software. It is, in part, due to the fact that development, installation

and operation of the software changes the application and its operational domain

so creating mismatch between the two. Evolution is achieved in a feedback driven

and controlled maintenance process. If the consequent pressure for evolution to

adapt to the new situation is resisted the degree of satisfaction provided by the

system in execution declines with time.

2.2 I I - - Increas ing Complex i ty

As a program is evolved its complezity increases unless work is done to maintain

or reduce it.

This law may be an analogue of the second law of thermodynamics or an

instance of it [20]. It results from the imposition of change upon change upon

change as the system is adapted to a changing operational environment. As

the need for adaptation arises (first and seventh laws) and changes are succes-

sively implemented, interactions and dependencies between the system elements

increase in an unstructured pattern and lead to an increase in system entropy.

If the growth in complexity is not constrained, the progressive effort [1]

needed to maintain the system satisfactory becomes increasingly difficult. If anti

regressive effort [9] is invested to combat the growth in complexity, less effort

is available for system growth. Given that resources are always limited the rate

of system growth declines as the system ages WHICHEVER STRATEGY IS

FOLLOWED. In practice the balance between progressive and anti-regressive

activity is determined by feedback.

2 . 3 I I I - - S e l f R e g u l a t i o n

The program evolution process is self regulating with close to normal distribution

of measures of product and process attributes.

The evolution of industrially produced E-type software is implemented by a

technical team operating within a larger organisation. The interests and goals of

the latter extend far beyond completion of the system in question. Checks and

balances will have been established by corporate and local management to en-

sure that operational rules are followed and organisational goals at all levels are

met. The positive and negative feedback controls that implement these checks

and balances provide one example of feedback driven growth and stabilisation

mechanisms. There will be many others. Together they establish a disciplined

dynamics whose parameters are, at least in part, normally distributed [5] be-

ing the consequence of a large number of pseudo independent managerial and

110

implementation decisions. After a while this dynamics determines many of the

growth and other development characteristics of the evolving product.

2.4 IV - - Conserva t ion of Organisa t iona l S tab i l i ty (invar iant work

rate)

The average effective global activity rate on an evolving system is invariant over

the product life time.

Of the eight laws this fourth law was and remains the most counter intuitive.

By and large it is still generally believed that the effort expended on system

growth and evolution is determined by managerial decision. To some degree cor-

porate and local management certainly do control activity targets and resource

allocation to a project, system or activity. Their ability to do this is, however,

constrained by external forces, trade unions or the availability of personnel with

appropriate skills for example. But as suggested by the third law the effort

usefully expended, that is to achieve satisfactory results, is also determined by

system attributes, complexity for example, that are analogous to attributes such

as inertia and momentum in mechanical systems. As indicated by Brooks [4]

circumstances may even arise where, for example, providing additional resources

may actually reduce the effective rate of productive output as a result of in-

creased communication and other overheads or decreases in process quality. In

any practical situation the level of activity is not decided exclusively by man-

agement edict but by a host of feedback inputs and controls. Project data so far

analysed suggests that in practice this leads to stabilisation at a fairly constant

level.

2.5 V m Conserva t ion of Fami l ia r i ty

During the active life of an evolving program, the content of successive releases

is statistically invariant.

One of the factors that determines the progress of a software development

is the familiarity of all involved with its goals. The more changes and additions

are associated with, say, a particular release, the more difficult it is to for all

concerned to be be aware, to understand and to appreciate what is required

of them. The rate and quality of progress and other parameters are influenced,

even limited, by the rate of acquisition of the necessary information by the

participants collectively and individually. The larger work package the more

challenging mastery of the matter to be acquired. Data to date suggests that

this is not a nice linear relationship but one in which there are one or more

critical size levels which if exceed trigger behavioural change. The rapidity of

the change suggests that here too feedback mechanisms play an important role.

2.6 VI - - Con t inu ing G r o w t h

Functional content of a program must be continually increased to maintain user

satisfaction over its lifetime.

111

At first sight the sixth law, Continuing Growth, appears little different to

the first law, Continuing Change. In fact, however, the two laws reflect dis-

tinct, though not unrelated, phenomena. The first relates closely to the Software

Uncertainty Principle [14, 15] which recognises, inter alia, that, for example,

changes in the operational domain will invalidate assumptions embedded in E-

type software and so cause unexpected behaviour in execution. As users become

aware of consequent imprecision, unsatisfactory or incorrect operation they will

demand a fix. The law reflects the feedback impact of system usage on the ap-

plication, on its domain, on users and on assumptions made during development

and maintenance of the software. Change is inevitable in software as it is in

any active system. The rate at which pressure for change develops in software

relative to human perception and the intolerance for mismatch if changes are

not implemented is, however, greater than for other real world systems. Hence

the common perception of continuing maintenance and for the view that E-type

software must be seen and treated as organisms.

The sixth law addresses change deriving from a different source. When a

new system is to be developed (whether from scratch or from of-the-shelf (OTS)

components) or an existing one is to be upgraded the first input required, though

often not provided, is a detailed description (model) of the application in its

actual or desired operational domain. This application domain model is the

foundation and definitional source of the requirements and specification for the

required system. Because of limitations arising from constraints such as budget,

delivery dates, technology and understanding of the application in its domain 2

the domain model and the definitions of requirements and specifications have

to be bounded. Items relating to candidate functional, behavioural and other

attributes that cannot be accommodated, for whatever the reason, within the

imposed constraints will be explicitly or implicitly excluded. Sooner or later

omitted attributes will become the bottlenecks and irritants in usage as the user

has to replace automated operation with human intervention. Hence they also

lead to demand for change, in this case growth in capability to provide attributes

that could not be accommodated in the original development. Behaviour and

functionality associated with or arising from system execution and implemented

by humans at the interface, by ancillary systems or by applications software is

integrated into the system to remove bottlenecks and/or sources of imprecision

or error. The E-type system inevitably grows with time driven by feedback from

user and marketeers.

2 . 7 V I I - - D e c l i n i n g Q u a l i t y

E-type programs will be perceived as of declining quality unless rigorously main-

tained and adapted to a changing operational environment.

Discussion of the sixth law made brief mention of the Principle of Software

Uncertainty. In one of its alternative formulations this states that the real world

2 The constraints axe here listed on the order of normal orga~isational concerns not

of technical importance or operational significance

112

outcome of E-type software execution is inherently uncertain with precise area

of uncertainty also not knowable. A system that has performed satisfactorily for

some period of time may suddenly exhibit unexpected, previously unobserved,

behaviour. Several causes to explain this phenomenon, all valid and complemen-

tary, may be identified [14, 15] and encapsulated in the Principle of Uncertainty.

The simplest is associated with the fact that there is a gap between the po-

tentially unbounded E-type application and its real world operational domain

and the finite system developed with finite resources in finite time to address

a constrained application in a constrained domain. The constraints represent

assumptions about the application, the theory that underlines its component

parts, the domain, human behaviour, the execution system and so on together

with the passive or active reaction of all these to each other and to system oper-

ation. They are required because an unbounded system cannot be constructed.

They are adopted, explicitly or implicitly, according to the perceptions and un-

derstanding of the application and its domain at the time of implementation

and are embedded in the system to bridge the gap. But the real world is always

changing. In fact, such change is, in part, driven or accelerated by the process

of computerisation. Hence, however, justified or valid the assumptions will have

been at the time of adoption the full set embedded in the system will contain pro-

gressively more that are not (no longer) valid or justified. What the consequence

of encountering the embodiment of such an assumption during execution will be

is unpredictable. Hence there must be a degree of uncertainty, unpredictability,

about E-type system behaviour.

The seventh law states that such uncertainty increases with time unless sue-

cessful attempts to detect and rectify the embodiment are taken as part of the

maintenance activity. It is also a consequence of the fact that familiarity breeds

contempt. As time elapses and the user community become more perceptive and

expectant; alternative products become available, the criteria of acceptability

and satisfaction change. Ultimately quality of a product must relate to user sat-

isfaction. Hence the quality of a software system declines with time and once

again information feedback plays a key role.

2 . 8 V I I I - - Feedback Sys tem

E-type Programming Processes constitute Multi-loop, Multi-level Feedback sys-

tems and must be treated as such to be successfully modified or improved.

This brief outline of the Laws of Software Evolution has included references

to the role of feedback in the process. These remarks may be generalised with

the observation that global E-type software system evolution processes consti-

tute complex multi-loop, multi-level, multi-agency feedback systems. The role

of feedback in the process was, in fact, recognised almost from the start of the

detailed study of the software process [8]; a study that led to the wider explo-

ration of software evolution. A 1972 paper [3], for example, discussing an earlier

version of the full OS/360 IBM operating system growth curve reproduced in

figure 1, observed that, "the ripple is typical of a self stabilising process with

positive and negative feedback loops. From a long-range point of view the rate

113

of system grow this self-regulatory, despite the fact that many different causes

control the selection of work implemented in each release, with varying budgets,

increasing numbers of users reporting faults or desiring new capability, varying

management attitudes towards system enhancement, changing release intervals

and improving methods".

8000

7000

6OOO

5000

40OO

3000

2000

1000

0

Size

4-
+.

.4.+ 0
. ~ ~

, , 0 :

m J

4-' 0,

+.t++§ +" ': +

+
+

+4-
p

++'4 .+

§247

i g , , , , , e , , i , , i �9 J l i 1 , n l i i l l

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Sequence No.

Fig. 1. The growth of OS/360

This plot, and others like it, provides many clues to the properties of the

overall OS/360 evolution process [12]. Here the principle interest is in the indi-

cators of feedback control. The preceding paragraph referred to the ripple effect

which was, and is, believed to reflect process self stabilisation through negative

feedback. The chaotic (in a strictly technical sense) behaviour exhibited over

the final releases is similarly interpreted as instability due to excessive positive

feedback evidenced by the excessive feedback driven growth in evolving from

release 19 to release 20.

The conclusions drawn from the 1970s studies recognised that the presence of

feedback in the software development process and organisation required one to

"regard the organisation developing and maintaining a large program as a system

in the system theoretic sense. Observation has shown that the system behaves

as a self stabilising feedback system. The process leads to an organisation and

a process dominated by feedback with long range trends and invariances" [10].

All these observations and many more are encapsulated in the eighth law.

114

The eighth law is, therefore, not new though it was not originally formulated

as a law. Its formulation illustrates how one may obtain and interpret clues as

to the nature of a phenomenon, which, as they accumulate, provide a growing

observation base, behavioural and factual, from which one builds a theory of

behaviour. Such theory, when established in outline, may then be refuted or re-

fined, tested and improved by further observation and experimentation. What is

surprising is that it has taken more than fifteen years for the full implications of

the observations of the 70s to be realised; that only now has it become apparent

that statement of a incontrovertible fact as a law may have important bene-

fits. The full impact of this law on the formulation of the other seven laws, on

their impact or on their practical implications has not yet been systematically

explored. It is intended that this be one of the outputs of the FEAST project.

3 W h y Laws?

Before introducing the FEAST programme it seems appropriate to briefly exam-

ine the use of the term laws rather than words such as observations or hypotheses.
When the laws were first presented in the literature [9, 10, 11, 12] widespread

criticism of the use of the term laws was voiced. It was suggested, for example,

that the observed phenomena reflected the behaviour of human designers, imple-

mentors, managers and users. Thus they could not be laws in the normM sense

of the word. Others felt that the phenomenology they reflect could be altered

at will, by education for example. Still others observed that the behaviour de-

scribed was intimately bound up with a particular organisation (IBM) and/or a

particular system (OS/360) and/or the software system development technology

of the 70s. As such the observed phenomena lacked the generality that use of

the term law implies. The refutation of the first view was based on the facts that

the laws reflect the cooperative activity of many individual and organisational

behaviour. Their analysis requires, therefore, experience in disciplines removed

from computer science and software engineering, psychology, organisation the-

ory and management science, for example. Moreover since, in part at least, the

characteristics identified by the laws stem from the feedback system nature of

the software process, discipline such as control theory or system dynamics the

phenomenology associated with such systems also plays a role. The observed

behaviour reflects the environment within which software engineering operates

and the laws governing that behaviour are not part of that discipline. From the

point of view of software engineering they must be accepted as laws [10, 12]. The

study was, however, not limited to the examination of one system. Data from

several other sources was also examined and upheld, or at least did not contra-

dict, the earlier conclusions [12]. With hindsight it must however be admitted

that a strong intuition played a part in the decision to use the term law. Only

now is that intuition beginning to be supported [21].

A second criticism is exemplified in Lawrence's ICSE 6 paper [7]. His view,

first expressed by Chong [5], was that the analysis of the data from which the

laws were inferred was not statistically significant. As a criticism of the laws,

115

however, this too is unfortunate. It stems from a misunderstanding. At no time

was any claim made that the laws were derived from statistical models of the

observed behaviour of the five or so systems studied. How could they have been,

after all, even in the best case there were only some twenty data points? Models

were derived by curve fitting. These led to exploratory, statistical probes to help

and guide interpretation of the observed behaviour in terms of ones knowledge

and understanding of the observed process and of related activities. The laws

represent an emerging theory of software process and software evolution based

on many inputs including the reality of software development. Observation and

modelling, numerical, statistical or otherwise, provide guides, circumstantial ev-

idence and inspiration which must then be tested against the real thing. As such

evidence accumulates and to the extent that the models support and extend each

other they may eventually provide statistically significant support. But that time

is not yet here.

4 F E A S T

4.1 The F E A S T Pro j ec t

This project is rooted in hypotheses outlined in section 4.4. It seeks to investigate

the role and influence of feedback in the evolution of E-type software systems and

on the improvement of the software process. Hence the name FEAST: Feedback,

Evolution And Software Technology.

4.2 Process I m p r o v e m e n t

The first recorded mention of a need for improvement in the process of program-

ming is believed to be in remarks by Wilkes, Wheeler and Gill in connection with

their invention of the concept of subroutines [22]. In the preface to their book The

Preparation of Programs for an Electronic Digital Computer, they write "The

methods of preparing programs for the EDSAC described in this book were de-

veloped with a view to reducing to a minimum the amount of labour required

and hence of making it feasible to use the machine for problems that require only

a few hours of computing time as well as for those which require many hours"3.

The search for improvement has been in the forefront of programming research

and development ever since. Some two years ago the question was asked why,

despite the many innovations in programming methodology, in process organi-

sation and in project management over the past 45 years industrial software and

systems development still suffers major problems?

Why has improvement of the process proved so difficult and slow despite a

massive research investment by government, industry and academia? The con-

ventional approach to answering this question associates lack of global progress

with problems of individual innovations. It is suggested, for example, that high

level languages have not solved the overall problem because their impact is local

a The present author's italics

116

not global. Their use may produce a three to five fold speed up in coding. It cer-

tainly makes the resultant text more intelligible, hence less error prone. But the

effort that goes into coding represents only a small proportion of the total system

development effort. The local gain is only minimally reflected in the global pro-

cess. Formal methods have not made a major impact on industrial development

effectiveness because people do not have or do not like the mathematical skill

required to use the methods effectively. Thus they have not found widespread

application in industry. CASE has not delivered the expected promise because

organisations adopt methods and acquire tools one at a time. Only when they

have several tools, is it discovered that they cannot be used together effectively.

As often as not as much is lost in progressing work from one method/tool to the

next as was gained by using the first tool in the first place; truly discouraging.

And so on.

This technique by technique approach to explain the source of difficulty in

major process improvement is unsatisfactory as, indeed, is the search for im-

provement through the introduction of innovations one by one. For complex

systems - and the software development process is that - the latter approach

which is akin to local optimisation normally leads to global sub optimisation.

Where so many innovations have failed to deliver their promise it would surely

be appropriate, in the first instance at least, to look for a common cause. One

must search for an intrinsic constraint on the improvement of the global pro-

cess of transforming an application concept into an operational system and on

maintaining the resultant system satisfactory over its working life.

4.3 The Process as a Feedback Sys t em

Given that formulation of the issue, an immediate solution to the conundrum

suggested itself. The global industrial software process is a feedback system. It

involves not only technical development but process engineering, many levels of

management, corporate executes, marketing, user support and so on. The di-

rection, quality, effectiveness and output of the process is a complex function of

the directive, control and information flow between many agencies and agents.

that drive, guide, redirect and generally seek to control the process. In such a

feedback systems positive feedback triggers or accelerates growth and may lead

to instability (as seen in the final releases of 0S/360 - fig. 1). Negative feedback,

on the other hand, has a stabilising influence. When negative feedback is ap-

plied over some forward path element, be it a single mechanism or a subsystem,

changes in the output of that element in response to changes in its characteristics

are reduced by approximately the gain in the feedback loop. The precise impact

depends, of course, also on the delay or phase shift in the loop. One achieves

global stability in the face of changes in element characteristics.

With many feedback paths in a system, a complex relationship exists between

internal changes, the characteristics of communication and control various paths

between elements, internal interactions and observable external behaviour. In

particular replacement of an element with one having different characteristics,

even addition of a new element, may make no significant or even perceptible

117

difference to observed system behaviour. At best the observed changes will be

much less than might have been anticipated from changes in element charac-

teristics. To impact global system behaviour significantly by internal changes

requires adjustment of feedback paths and attributes of their mechanisms in a

way that is neither simple nor self evident. Changes to forward path elements

alone will have a much smaller global impact than analysis of the local impact

would suggest.

The insight that followed acknowledgment of the software process as a feed-

back system should now be self evident. The process must surely possess the

same general feedback system property. The impact of internal changes to pro-

cess mechanisms must surely be constrained by the many feedback paths in the

process and the organisations within it is embedded and applied. The visible ben-

efit derived from the introduction of improved languages, methods, procedures

or tools in the forward, development path of the process can only have limited

impact. Locally an innovation, whatever its nature, might prove to be most ben-

eficial, yielding significant improvement in productivity, quality, responsiveness

or whatever. But such gain is likely to be attenuated or even inverted by the

feedback mechanisms that certainly modify, perhaps determine, overall process

characteristics.

Process improvement efforts should not be concentrated on forward path

technical development. Nor is it sufficient to extend consideration to system

definition steps such as requirements engineering, system specification and de-

sign. Communication channels between technical development, the organisations

within which it is embedded and the user community must be considered. These

channels include feed forward and feedback mechanisms operating in the global

process, which be improved and tuned to the state of the forward path at any

point in time.

Improvement efforts must consider the influences stemming from all organ-

isational levels. Marketing, sales and user support feed back information and

requests that influence the process. Software engineering activity that defines

and designs the process used, its support and the activities that progress the

product through its various stages of development also exercises significant in-

fluence. All these agencies and groups must be considered when process changes

are proposed. All impact product and process goals, product distribution, in-

stallation and introduction into usage, the product evolution process. Much of

that influence is achieved via feedback, whether in the form of control or as

information that influences local decision taking. Equally, participants in the

process must recognise that for users the product as not an end in itself. It is a

means to an end, producing benefit that accrues to the development organisa-

tion, the client organisation, the user community and a wider circle. This entire

community is a source of feedback pressures.

4.4 The F E A S T Hypothes i s

However convincing the reasoning, the insight summarised by the brief phe-

nomenological analysis above must, nevertheless, be regarded as a hypothesis. It

118

must either be proven false or evidence supporting, strengthening and extending

it must be obtained. This can be achieved, for example, by studying real, indus-

triM, processes, identifying loops and demonstrating how they constrain process

improvement. If that can be done and if the software engineering community

can learn to exploit the phenomenon, its implications and its interpretation the

hypothesis will become a basis for a theory of the software process and of soft-

ware product and process evolution. Its achievement would constitute significant

progress.

The FEAST hypothesis is the formulation of such a hypothesis. It represents

the encapsulation and formulation of the 1970s observation, their reflection in

the laws outlined above and process insight developed more recently. It has been

widely presented and discussed. As a result its precise formulation has changed

somewhat since first proposed [6]. Versions of the hypothesis will be found in [6]

and in [16]. We present below a recent formulation [18].

Hypo thes i s : As complex feedback systems E-type software processes

evolve strong system dynamics and the global stability tendency of other

feedback systems.

S u p p o r t i n g observat ion: Processes adopted, applied and improved in

industry, will naturally evolve positive feedback to drive organisational

growth and negative feedback controls - - checks and balances.

This hypothesis actually includes three sub-hypotheses or assertions:

- The so~ware cvohtion process for E-type systems constitutes a com-

plex feedback system.

- Where present, feedback is likely to constrain the global benefits

derived from forward path changes to the process, however effective

they may appear locally.

- Major improvement requires process innovation to change system

dynamics by modification of feedback mechanisms.

A lemma also follows: slow progress in process improvement may be due,

at least in part, to lack of a t t e n t i o n to feedback phenomena?

5 FEAST/1

The above statement and a fuller phenomenological analysis of the nature and

likely consequences of feedback in the global software process as briefly outlined

in section 4.2 and 4.3 provide the starting point for a systematic investigation

to confirm the validity and relevance of the hypothesis, to develop means for

its exploitation and to strengthen the theoretical base for process improvement.

Over the past two years three workshops at Imperial College with wide, inter-

national, participation [6] and with the primary objective of arousing interest in

the approach have laid the foundations for a collaborative, international, multi-

disciplinary investigation. A two year project named FEAST/1 is now funded by

EPSRC under grants numbered GR/K86008 and GR/L07437. It will commence

in the Autumn of 1996 with Professors B Rustem, V Stenning and the present

author as Principle Investigators.

119

For the past two years a core group consisting of Professors V Stenning

and W M Turski and Dr D E Perry has been meeting at intervMs both to

clarify some of the basic concepts that underlie the hypothesis and, therefore, the

proposed investigation. Some of their early discussion concentrated on seeking to

understand the meaning of positive and negative in the context of feedback and

on a search for examples. It proved possible to generate hypothetical instances

of feedback in their understanding of a typical industrial process. Examples

based on real experience in actual processes proved more illusive. Hence the

importance of the project plan to include studies of a series of industrial projects.

Access to such projects will be provided by the FEAST/1 commit ted industrial

collaboration, BAe, ICL, Logica and MOD. The core group also recognised a

need for and organised a series of three FEAST workshops at Imperial [6] whose

main idea was to expose the hypothesis and under lying concepts to a wide

international forum.

The specific conceptual dimculty encountered by the core group in its dis-

cussions related to the fact that in analysing feedback in the software process

one must take cognizance of the distinction between feedback control and infor-
mation feedback which the recipient absorbs (perhaps), interprets (correctly or

incorrectly) and acts upon or ignores. Control feedback we can hope to analyse

and model in a systematic and rigorous fashion. After all this has been done for

many years in, for example, control theory applied to economic modelling [2]

and, more recently, in studying and seeking to improve business processes [19].

Information feedback on the other hand, poses more difficult problems. Person

to person information flow is clearly not amenable to rigorous analysis. Psy-

chologists might care to attach different probabilities to various reactions. The

software engineer can hardly expect to provide a meaningful model. When it

comes to the consequences of cumulative information flow in the larger process

the situation may be a little more hopeful. Despite the fact that each individ-

ual acts on his or her own in decision taking they do take information received

into account. With numerous individuals taking numerous decisions one may

ask whether the net result in their impact on the process is not, in some sense,

normally distributed. This was, in fact, precisely the approach taken in seeking

to explain the third law [10, 11] and was shown to be the case in, at least, one

instance [5].

A brief synopsis of the core group discussions and conclusions may be found

in [17].

6 Preliminary Results

Systematic work on the project according to the current plan [leh96b] must await

its formM start in the Autumn of this year. But some small progress has already

been made. In particular, Logica pie, has given us growth da ta on one of their

system. This banking transaction system with some one hundred user sites has

now seen over twenty documented releases and sub releases. Th a t is the records

extend to a total of twenty three release sequence numbers (RSN). Figure 2

plots system size modules as a function of the RSN.

2500

2OOO

1500

1000

500

120

me �9 j m

�9 �9 �9 �9 o ~ �9 A
. , ' o

o ~ �9 � 9

o * �9

�9 . o j =

I ~ * o ~

0 , ~ , , �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9 �9

0 2 4 6 8 10 12 14 16 18 20
Growth of Logica FW system by Sequence No.

Fig. 2. The growth of System FW

This curve has strong similarities with the OS/360 growth curve reproduced

in figure 1. It provides, therefore additional circumstantial real world evidence

that the software process is self stabilising. This data would seem to negate the

1970s suggestion that, for the reasons summarised in section 3 inferences from

OS/360 or 1970s data were not more widely applicable. At first glance at least the

data as plotted appears to support the first and/or sixth and third laws directly.

A final judgment must of course await detailed exploration of this and of further

data which will become available once the project is under way. For example,

whether the observed growth is due to the first or sixth law phenomenon, or to

both will require detailed examination of the changes applied to each release.

A brief analysis by Turski of the minimal data of figure one [tur96] has also

proved most valuable produced a truly remarkable result. In summary he has

shown that, despite the ripples, the data fits very closely to what he has termed

an inverse square growth law. That is i fSi is the size in modules of the release

with RS Ni :

Si+l - Si + E_~/(Si) 2, (1 < i < n - 1)

where Ei is a constant that represent the work done (in unidentified units)

to take the system from RSNi to RSNi+I and _E is the average El computed

121

across the full set of observed values. The closeness of the fit is illustrated in

figure 3.

Loglca FW System

Deviation of Inverse Square Prediction

from actual size

200

150

100

50

0

-50

-100

-150

-200

-250

Release Sequence Humber (RSN)

Fig. 3. Difference between Actual size and Inverse System Size Prediction for

FW

This relationship is, of course, entirely compatible with the view that grow-

ing complexity (second law) is a constraining growth factor. Perhaps just as

significant is the fact that such a square law growth is very typical of a system

dominated by its own system dynamics. The ability to closely fit a constant

effort parameter E appears equally to support the third law. So the data plot-

ted in figures 2 and 3 provides further circumstantial support for the laws and

the hypothesis. Perhaps the most astonishing result obtained by Turski was in

relation to the constant E. He computed E in the first instance from all twenty

pairs of datapoints i = 1 to i = 23.

An even more impressive initial result obtained by Turski is illustrated by

figure 4. This shows the average error in size prediction and its standard deviation

if E is estimated from the first j data point pairs (p < j < 20).

This suggests that, at least for FW, the system dynamics is so strong that its

parameters are fixed quite early in the life cycle of the evolving system. This is a

remarkable result which, if verified for other systems, has profound implications

on system evolution, its planning and management.

122

Logica FW System
Mean Error in Size with Effort Parameter Based

on Varying Number of RSN

4 5 0

4oo :
*

..
3 5 0

30O

2 5 0

. I M ~ I
I s ~ . ~ I

2 0 0

15o \ "
g *
.o

ll/ ' . .,
1 0 0 �9 s �9 �9 �9 m . m - m - m - m - e - m - m - m - m - m . m

5 0 o . e ,

, o
~ ~ �9 o qp o o . �9 �9 * �9 o o o �9 �9 �9 . o o

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

N u m b e r o f D a t a P o i n t s U s e d f o r

E s U n m f i a s o f E

Fig. 4. Difference between Actual size and Inverse System Size Prediction for

FW

7 S u m m a r y

It is not possible to do more than to provide these initial results in this paper.

The size data as presented above, and possible fits, needs further examination.

Additional data on FW is required. Similar data from other systems, different or-

ganisations and different developments must be obtained and anMysed. Further

the above black box approach must be complemented by a white box, or systems

dynamics, approach, to identify the nature of globM software process structure,

to isolate feedback loops, to determine their characteristics and how they con-

strain process improvement. Above all, if it is demonstrated that the feedback

control phenomenon is widespread, the software process is constrained by the

process dynamics, means must be developed for the mastery and exploitation of

that knowledge and understanding.

A c k n o w l e d g m e n t s

My grateful thanks are, above all, due to Dewayne Perry, Vic Stenning and

Wlad Turski who have put up with my obstinate refusal to abandon my beliefs

and have co-operated over a two year period in formulating and developing the

123

mater ia l presented here, and much more. Also to Wlad for permi t t ing me to

outline the results of his first analysis before his much fuller paper on the topic

has been published. Logica plc have been most kind in giving us access to their

F W da ta and in permit t ing its publication in the present form. Finally to EPSRC

for their two grants to support phase two of the longer FEAST investigation and

the continued association of Perry and Turski with that endeavour. Also to the

Depar tment of Trade and Industry for the earlier grant under the ESF extension

tha t permit ted us to establish the recent foundations of FEAST.

References

1. Banmol W J: Macro-Economics of Unbalanced Growth; The Anatomy Of Urban

Cities. Am. Econ. Rev. June 1967, pp. 415-426.

2. Becker R S, HaLl B, and Rustem B: Robust Optimal Control of Stochastic Nonlinear

Economic Systems. J. of Economic Dynamics and Control, n. 18, 1994,pp. 125-148.

3. Belaxty L A and Lehman M M: An Introduction to Program Growth Dynamics. In

Statistical Computer Performance Evaluation. W Freiburger (ed), Academic Press,

New York, 1972, pp. 503-511.

4. Brooks F: The Mythical Man Month. Addison-Wesley, Reading, MA., 1975, 2nd ed.

1993, p. 206.

5. Chong Hok Yuen C K S: Phenomenology of Program M~ntenance and Evolution.
PhD Thesis, Dept. of Comp., Imp. Col., 1981.

6. M M Lehman (ed.): Preprints of the three FEAST Workshops, Dept. of Comp.,

ICSTM, 1994/5.

7. Lawrence M J: An Examination of Evolution Dynamics. Proc. Proc. 6th Int. Conf.

on Softw. Eng., Tokyo, Japan, 13-16 Sep. 1982. IEEE Comp. Soc. ord. n. 422, IEEE
cat. n.81CH1795-4, pp. 188-196.

8. *4Lehman M M: The Programming Process. IBM Res. Rep. RC 2722, IBM Res.

Centre, Yorktown Heights, NY 10594, Sept. 1969.

9. *Lehman M M: Programs, Cities, Students, Limits to Growth?, Inaugural Lecture,

May 1974. Publ. in Imp. Col ofSc. Tech. Inaug.1 Lect. Ser., vol 9, 1970, 1974, pp.

211-229. Also in Programming Methodology, (D Gries ed.), Springer, Verlag, 1978,

pp. 42-62.

10. *Lehman M M: Laws of Program Evolution - Rules and Tools for Programming

Management. Proc. Infotech State of the Art Conf., Why Softwaxe Projects Fail,

Apr. 1978, pp. 11/1 11/25.

11. Lehman M M: On Understanding Laws, Evolution and Conservation in the Large

Program Life Cycle. J. of Sys. and Software, 1:3, 1980, pp. 213-221.

12. *Lehman M M: Programs, Life Cycles and Laws of Software Evolution. Proc. IEEE

Special Issue on Softwa~re Engineering, 68:9, Sept. 1980, pp. 1060-1076.

13. Lehman M M and Belady L A: Program Evolution - - Processes of Software
Change. Academic Press, London, 1985, pp. 538.

14. Lehman M M: Uncertainty in Computer Application and its Control Through the
Engineering of Software. J. of Software Maintenance: Research and Practice, 1:1,

Sept. 1989, pp. 3-27.

4 Papers identified by an * in the references listing are reprinted in [leh85]

124

15, Lehman M M: Software Engineering, the Software Process and Their Support. IEE

Softw. Eng. J. Spec. Iss. on Software Environments and Factories, Sept. 1991, 6:5,

pp. 243-258.

16. Lehman M M: Process Improvement - the Way Forward. Proc. CAiSE 95, Jy-

vaskyla, June 1995, Lect. Notes in Comp. Sci., Springer Verlag, pp. 1-11.

17. Lehman M M, Perry D E and Turski W M: Why is it so hard to find Feedback

Control in Software Processes? Invited Talk, Proc. of the 19th Australasian Comp.

Sc. Conf., Melbourne, Australia, 31 Jan - Feb 2 1996. pp. 107-115..

18. Lehman M M and Stenning V: FEAST/l: Case for Support, ICSTM, March 1996.

19. Ould M A: Business Processes - Modelling and AnaJysis for Re-engineering and

Improvement. Wiley, Chichester, 1995.

20. Scarrott G A: Private communication, June 1993.

21. W M Turski: Reference Model for Smooth Growth of Software Systems. U. of

Warsaw, June 1996,Submitted for publication, available for perusa] only from Prof.

W M Turski, Dept. of informatics, University of Warsaw, Banal:ha 2, 00-903 Warsaw

59, Poland.

22. Wilkes M V, Wheeler D J and Gill S: The Preparation of Programs for an Electronic

Digital Computer. Addison Wesley Press Inc., 1951, 167 pp.

