
On Understanding Laws, Evolution, and
Conservation in the Large-Program Life Cycle

The paper presents interpretations of some recently dis-
covered laws of evolution and conservation in the large-
program life cycle.

Program development and maintenance processes
are managed and implemented by people; thus in the
long term they could be expected to be unpredictable,
dependant on the judgments, whims, and actionsof pro-
gramming process participants (e.g., managers, pro-
grammers, and product users). Yet, observed, mea-
sured, and modeled regularities suggest laws that are
closer to biological laws or those of modern physics
than to those currently formulated in other areas subject
to human influence (e.g., economics and sociology).

After a brief discussion of the first four laws, to high-
light underlying phenomena and natural attributes of
the program evolution process, the paper concentrates
on a fifth law and shows how, and why, this law repre-
sents a conservation phenomenon: the Conservation of
Familiarity

LARGE PROGRAMS

Various published papers ([11 and its bibliography),
have discussed the characteristics and dynamics of

evolution of large programs and the laws that have
emerged from the studies of Belady, Lehman, and
others over the past 7 years. The main objective of
the present contribution is to discuss one specific as-
pect of these laws-conservation. However, some
general introductory remarks are desirable.

In the first place we should stress that the discus-
sion here is limited to large programs. Until recently
these were defined as programs of which at least some

part has been concurrently implemented and/or main-
tained by at least two separately managed groups [2].

Such programs will certainly display the character-

istics of largeness [3]. They will, for example. inevi-
tably have the property of variety; they will also be
outside the intellectual grasp of any individual; above

all, they will undergo a continuous process of main-
tenance and evolution, generally in somewhat undis-
ciplined fashion.

The above definition is, however. not very satis-
fying. For one thing, programs not satisfying it may

also display some or all of the other characteristics of
largeness. Moreover, the definition tends to focus at-
tention on management or sociological issues,

whereas our fundamental concern is with program-
ming methodology and the engineering of software.
In particular, we should seek to recognize and learn
to control the circumstances that lead to the ill effects
so often associated with largeness. Will not the adop-
tion of appropriate attitudes, algorithms, methodol-

ogies. and programming techniques yield large pro-
grams that are well disciplined? Such questions are
being addressed via our current research, which in-
cludes attempts to formulate more acceptable and
useful definitions. We expect to report the results in
due course.

THE NATURE OF LAWS OF PROGRAM

EVOLUTION

Their Place Within the Spectrum of Scientific

Laws

The evolution of large programs. software systems,
is clearly not a natural process governed by immuta--
ble laws of nature. Changes to a program are neither
initiated nor occur spontaneously. People do the
work: amend or emend the requirements, the speci-
fication, the code, the documentation: repair the sys-
tern: improve and enhance it. They do this in response

The Journal of System and Software I. 213-22 I (1980)

0 Ekvier North Holland. Inc.. 1980

214 M. M. Lehman

to fault reports, user requests, business or legal re-
quirements, managerial directives, or their own in-
spiration. Human thought and judgment play a deci-
sive role in driving and executing the process that
results from (and in) a seemingly continuous sequence
of exogenous inputs. l

Thus, we should not expect to discover laws of
program evolution that yield the precision and pre-
dictability ofthe laws of physics [4]. If laws governing
large-program evolution can be formulated at all, they
must certainly be weaker than those formulated in the
biological sciences, where regularity stems from the
collective behavior of cellular systems that, even
though alive, are nonintelligent, i.e., are not influ-
enced by conscious thought processes, at least at the
level of human understanding. Program evolution
should not even be expected to display the regularity
that has been abstracted into laws in the social and
economic sciences, e.g., the so-called Law of Supply
and Demand. After all, the programming process is
planned and controlled by an organizational and man-
agement structure that is sensitive and reactive to the
demands, pressures, circumstances, and contingen-
cies of each moment. Thus, superficially, it would
seem reasonable to expect the program evolution pro-
cess to be totally irregular, a reflection at each in-
stance in time of the pressures of the moment.

One of the first and most surprising, yet most fun-
damental, results of our observations and of the re-
sultant analysis of the dynamics of evolution of some
eight programs ranging over a wide spectrum of im-
plementation and usage environments, has been that
this is not so. Regularities, trends, and patterns ap-
pear and dominate large-program evolution. The
common features and patterns of behavior reflect
common characteristics [3] from which laws can be
deduced; laws that, within the spectrum outlined, lie
closer to those that describe the time behavior of bi-
ological organisms than those that emerge from the
study of socioeconomic systems. Moreover, these
laws find very practical application. They provide a
basis for large-program life cycle management tools,
as well as insight and understanding for improvement
of the programming process. As we increasingly rely
on the laws for guidance in the development of pro-
gramming methodology and on a software engineer-
ing discipline with its techniques and tools, it becomes
vital to develop also a deeper understanding of these
laws and the fundamental phenomena or truths that
they reflect.

‘We may regard the inputs as exogenous even though some of
them will have been generated while, or as a result of, working on,
or using, the system.

The Underlying Cause of Regularity

Once the phenomena have been recognized, the
mechanisms underlying them are not difficult to un-
derstand. As a totally unintelligent machine, the com-
puter executing a program impacts its environment in
a way that is precisely and completely determined by
the code in association with any input data. The code
is unforgiving; there is no room for logical error or
imprecision. Thus any deviation from the required
semantic and syntactic structure creates a need for
corrective action. Good intentions, hopes of correct-
ness, wishful thinking, even managerial edict cannot
change the semantics of the code as written or its ef-
fect when executed. Nor can they a posteriori affect
the relationship between the desires, needs, and re-
quirements of users and the program specification as
presented to the programmers; nor that between the
specification and its implementation; nor between any
of these and operational circumstances-the real
world.

Additionally, the program and its documentation
in all their versions-the system-has a damping ef-
fect analogous to an ever-increasing mass. It is pre-
cisely the freedom to implement changes or additions
required for obtaining desired program behavior
which is increasingly constrained by existing accu-
mulated code and documentation, past program ap-
plication and behavior, acquired habits, and imple-
menter and user practices.

The development and implementation of change
and of any subsequent corrective action is strongly
influenced by the fact that, in itself, program code is
also not malleable. Internal coupling, interconnec-
tions, and dependencies cause even changes that su-
perficially appear localized to impact and modify the
semantic consequences of code elsewhere in the pro-
gram. Thus when changes are made to the code, de-
viations from absolute correctness will occur and un-
expected side effects will appear; these are very likely
to lead to a need for further corrective action. The
more intensive the pressure for change, the higher the
rate of its implementation, the larger the group of peo-
ple involved, and the more likely that maintenance
must subsequently be diverted from progressive en-
hancement to repair and cleanup (i.e., on redesign,
restructuring, and re-implementation).

We recognize these dependencies as feedback con-
nections over the entire system and application pro-
cesses and organizations. The resultant interplay of
forces for change and expansion of the code on the
one hand and the inertia of accumulated code, doc-
umentation, and habits on the other, and the interplay
over the various processes and the organizational

Laws, Evolution and Conservation 215

structures implementing them are believed to be

major factors in causing the observed regularity, de-
termining its statistical characteristics and
parameters.

These facts alone suffice to explain the consistency
of the observations. Recognition of other factors
merely strengthens our belief in the reality of the phe-

nomena. In particular, large programs are, as a rule,
created within large organizations and for large num-

bers of users; otherwise they could not be economi-
cally justified or maintained. But size causes inertia,
and inertia smoothes behavior that might otherwise

prove highly irregular. Moreover, the size and com-
plexity of both the program and the application for
which the program is intended mean that decisions
take time (sometimes considerable) and large num-
bers of people to implement. Resultant delays provide
exogenous pressures and endogenous opportunities
for change. The overall circumstances and environ-
ment act as a filter, smoothing out the global conse-
quences of individual decisions but, paradoxically,

also adding the occasional random disturbance. They
also act as an economic and social brake that inhibits
or softens decisions that would have tco drastic an
impact. For example, large budgets can, in general,
be neither suddenly terminated nor drastically in-
creased; in practice they can only be changed by frac-

tional amounts. Similarly, a work force cannot be in-
stantaneously hired. retrained, relocated, or
dismissed: at best a task force can be sent in, and can
cause a local perturbation.

In summary. large-program creation and mainte-
nance occur in an environment with many levels of
arbitration, correction, smoothing, and feedback con-
trol. A large number of superficially independent (i.e.,
almost random) inputs are concurrently and succes-
sively superimposed to yield time behavior that may
be statistically modeled (e.g.. described by parame-
ters that have normal distributions). Many, if not all.
of the inputs arise from organizational checks and bal-
ances. from feedback often also involving the users
of the system. The feedbacks in general ensure long-
term stability: negative feedback dominates. The al-
ternative. of course, would be instability and disin-
tegration of the system. The existence of regularity,
and therefore of laws abstracting that regularity, be-
comes reasonable and understandable.

The Gross Nature of the Laws

The detailed behavior of the programming process
and of the system that is the object of process activity
is the consequence of human decision and action.
Specific individual events in the life cycle of the sys-

tem, the system development and maintenance pro-

cess. cannot therefore be predicted more precisely
than can the specific acts of participating or interact-

ing individuals [41. Any laws can only relate to the
gross (statistical) dynamics of large-program systems
over a period of time, but as such they yield insight
and understanding that should permit improvement
of the programming process and advance the devel-
opment of software engineering science and practice.

Feedback Consequences of Increasing
Understanding of the Process

Increasing understanding of the dynamics of the

large-program life cycle raises another problem: To
what extent will the discovery and acquisition of

knowledge and understanding of the laws that regu-
late the programming process, by an environment
previously unaware of or insensitive to their exis-
tence, lead to changed behavior and thus invalidation
of the laws? How will managerial awareness of and
conscious reaction to the laws affect the very nature
of these laws? Since they reflect the joint behavior of

people, the laws are unlikely to be immutable. Surely
they may be expected to change as understanding of

system behavior increases [41.
Space does not permit us to address this question

in detail. We merely assert that the present laws re-

flect deeply rooted aspects of human and organiza-
tional behavior. Associated with the mechanistic
forces that define, control, and execute the automatic
computational process, they are sufficiently funda-

mental to be treated as absolute. at least in our gen-
eration. As knowledge of them is permitted to impact
the programming process, and as programming tech-
nology advances, they may require restatement or re-
vision, or become irrelevant or obsolete: but for the
time being, we must accept and learn to use them. To
ignore them is foolish and costly.

THE LAWS

We now comment briefly on the laws summarized in
Table 1, so as to expose some of the more fundamen-
tal truths that they reflect. These laws have been fully
discussed in earlier publications ([11 and its
bibliography).

1. The Law of Continuing Change

This first law reflects a phenomenon intrinsic to the
very being of large programs. It arises. at least in part.
from the fact that the world (in this case. the com-
puting environment) undergoes continuing change.

216

Table 1. Five Laws of Program Evolution

1.

2.

3.

4.

5.

CONTINUING CHANGE

A program that is used and that, as an implementation of its
specification, reflects some other reality, undergoes
continuing change or becomes progressively less useful. The
change or decay process continues until it is judged more cost
effective to replace the program with a recreated version.

INCREASING COMPLEXITY

As an evolving program is continuously changed, its
complexity, reflecting deteriorating structure, increases unless
work is done to maintain it or reduce it.

THE FUNDAMENTAL LAW (OF PROGRAM EVOLUTION)

Program evolution is subject to a dynamics which makes the
programming process, and hence measures of global project
and system attributes, self-regulating with statistically
determinable trends and invariances.

CONSERVATION OF ORGANIZATION STABILITY
(INVARIANT WORK RATED)

The global activity rate in a project supporting an evolving
program is statistically invariant.

CONSERVATION OF FAMILIARITY (PERCEIVED
COMPLEXITY)

The release content (changes, additions, deletions) of the
successive releases of an evolving program is statistically
invariant.

All programs are models of some part, aspect, or pro-
cess of the world. They must therefore be changed to
keep pace with the needs and the potential of a chang-
ing environment. If they are not, they become pro-
gressively less relevant, useful, and cost effective.

Of course all complex systems evolve. Living, so-
cial, and artificial systems [51 all respond to reactions
and pressures from their environments by changes in
operational pattern, function, and structure. Software
is distinguished not by the fact that evolution occurs,
but by the way in which it occurs.

The pressure for change with respect to any large
program is felt almost daily. A widely held view is that
the details of the desired change need “only” bc writ-
ten down and then applied without further real effort
(or so it would seem) to all instances of the system.
As a consequence, changes are superimposed
(change upon change upon change) in a current ern-

bodiment. This contrasts strongly with normal indus-
trial practice where conceptual changes are inputs to
a redesign and recreation process that ultimately pro-
duces a new instance of the system. Moreover, any
repairs to software are a departure from the original
conceived design and/or implementation rather than
the replacement of a worn-out part. In addition there
is, in software, absolutely no decay or death process
through which older parts of the system wear out and
are replaced, or disintegrate and disappear out of the

M. M. Lehman

system. Removals, with replacements and additions,
occur as a result of system-extraneous pressures and
effort, and then only as the result of conscious and
directed effort on the part of people.

The evolution of software differs from that of other
systems in many other ways, but it is not our concern
here to prove that software is different or to state in
detail how it is different. We ask the reader to accept
that difference and then to ponder the practical
implications.

These implications are, we assert, strongly influ-
enced by the fact of continuing evolution, recognized
and formalized by the first law. The causes of contin-
uing change are seen as stemming, at least in part,
from the continuing evolution of the environments, in
combination with the “soft” nature of programming
technology. Hence changeability and all it implies
must be accepted as a basic requirement for software
systems. The degree to which it is achieved and main-
tained may make all the difference, in the develop-
ment, application, and cost effectiveness of a system
between success and failure, profitability and loss.

2. The Law of Increasing Complexity

Our second law may be seen as an analogue of the
second law of thermodynamics. More correctly, both
of these laws should perhaps be viewed as descrip-
tions of instances of a still more fundamental natural
phenomenon. In our case, the law is a consequence
of the fact that a system is changed to improve its ca-
pabilities and to do so in a cost-effective manner. Spe-
cific change objectives develop from a consideration
of factors that indicate immediate or measurable ben-
efit. They are expressed in terms of performance tar-
gets, system resources required during execution, im-
plementation resources, completion dates, fiscal
objectives and constraints, and so on.

In cases with multiple objectives, it is generally im-
possible to fulfill all of them optimally. Hence the
completed project and system must represent a com-
promise that results from judgments and decisions
taken during the planning and implementation pro-
cesses, often on the basis of time and group- or man-
agement-local optimization.

Structural maintenance is rarely mentioned in ob-
jectives. Being antiregressive [6], it yields no imme-
diate or visible benefit but merely (sic) prevents de-
terioration. Thus structure, being excluded from
stated project objectives, will inevitably suffer; each
change will degrade the system a little more. The re-
sultant accumulation of gradual degradation ulti-
mately leads to the point where the system can no
longer be cost effectively maintained and enhanced

Laws, Evolution and Conservation 217

unless and until redesign and cleanup or reimplemen-
tation is undertaken and successfully completed.

The law suggests that large-program structure
must not only be created but must also be maintained
if decay is to be avoided or, at least, postponed. Plan-
ning and control of the maintenance and change pro-
cess should seek to ensure the most cost-effective
balance between functional and structural mainte-
nance based on the lifetime of the program. Models
and tools are required to facilitate such balance.

3. The Fundamental Law of Large-Program
Evolution

This was previously called the La\r, of Stcitisticnll~

Smooth GronTh [7]. It expresses the observation al-

ready made above that large-program evolution does
not simply reflect, at each instant and in each period.
the decisions and actions of the people in the envi-
ronment in which it is maintained and in which it is
used. The law states that, at least in the current state
of the art, there exists a dynamics whose character-
istics are largely determined during the conception
and early life of the system of the maintenance pro-
cess and of the maintenance organization. The char-
acteristics of this dynamics increasingly determines
the gross trends of the maintenance and enhancement
process. System, project and organizational histor>

play an important role in the program evolution pro-
cess, while feedback effects the additional, inherent,
factor producing a self-stabilizing control process, it-

self evolving. Thus cyclic effects emerge, though not
necessarily with pure periods.

This law is particularly important in guiding OUI
understanding of the software creation and mainte-
nance process. However, its tacit acceptance (for the
time being) also helps the manager and the planner to
remain realistic. We are not free to set and achieve

arbitrary design, performance, and work targets [Xl.
Project constraints are at present not all under our
control. Thus we must accept any limits they imply

until they can be or have been changed. Moreover.
the law implies that models of large-program evolu-
tion can be created and be exploited as planning and
control tools.

4. The Law of Organizational Stability

This was previously referred to as the Law of Invar-
iant Work Rate [7]. It reflects the fact that, in general,
human organizations seek to achieve and maintain
stability or stable growth. As suggested above, sud-
den substantial changes in such managerial parame-
ters as staffing, budget allocations, manufacturing lev-

els, and product types are avoided; as a rule, such
changes are not even possible. A variety of manage-

rial, union, and governmental checks, balances, and

controls ensure smooth overall progress to the ever-
changing, ever-distant objective of the organization
(or its eventual collapse). In addition, the fourth law
also reflects the organizational response to the limi-
tation that, we shall show, underlies the fifth law.

Thus with hindsight it becomes clear that the dis-
covery of an invariant activity measure (statistically
invariant. as when its parameters are always normally
distributed with constant mean and variance) could
have been anticipated. What is not really understood
is why, in large-program maintenance projects, mew-
sures of work input rate should be the quantities to
display such invariance. However. the fact remains

that for the systems observed, the count of modules
changed (handled) or changes made per unit of time,
as averaged over each release interval, has been sta-
tistically invariant over the period of observation. The
limitations implied by this invariance can only be tem-
porarily overcome. If they need to be overstepped.
the consequences should be identified and must be
accepted.

5. The Law of Conservation of Familiarity
(Perceived Complexity)

In [7]. this was referred to as the Law of incremental

Growth Limits. Its discovery was based on data from
three systems, each of which was made available to
users release by release. In each case the incremental

growth of the program varied widely from one release
to the next, but the average over a relatively large
number of releases remained remarkably constant;
that is, a high-growth release would tend to be fol-
lowed by one with little or no growth, or even by sys-
tem shrinkage; or two releases, each displaying near
average growth, would be followed by one with only
slight growth. Moreover. releases for which the net

growth exceeded about twice the average proved to
be minor disasters (or major ones, depending on the
degree of excess) with poor performance. poor reli-
ability, high fault rates, and cost and time overruns.

The evidence suggests that initial release quality is

a nonlinear function of the incremental growth. From
a more complete phenomenological analysis along the
lines outlined below, we hypothesize that quality is
expontentially related to the w1c~tr.w c.o/rtort. that is.
to the amount of change implemented in the release.

It should perhaps be added that at this time we
know of no precise way of defining or measuring re-
lease content that takes into account the size, com-
plexity. and interrelationships of system and code

218 M. M. Lehman

changes, additions, and deletions. It is not even clear
that a metric can be found. If it can, then such a uni-
versal measure must also be sensitive to the charac-
teristics of the systems and the environments in-
volved in or affected by the changes.

The absence of adequate definitions and measures
is no reason for ignoring observed phenomena and
their implications. The gradual clarification and evo-
lution of concepts, definitions, and measures is fun-
damental to the very nature of the phenomenological
approach we have adopted, an approach that is con-
sidered essential for significant progress in mastering
the problems of software engineering. One first ob-
serves and measures some phenomenon, then seeks
models, interpretations, and explanations in more
fundamental terms; subsequently, one can seek mea-
sures and devise experiments that confirm, reject,
modify, and/or extend the original hypotheses, inter-
pretations, and explanations; and so on.

INTERPRETATION OF THE FIFTH LAW

Change and Refamiliarization

The phenomenon abstracted by the fifth law was de-
tected at a very early stage of the evolution dynamics
studies and was featured in the earliest models [91. It
has been applied as a planning and control parameter
for a number of years. The explanation, however, has
only recently become apparent. The release process
has always been understood as fulfilling a stabilization
role [91. Once a large program is in general use, its
code and documentation are normally in a state of
flux. A fault is fixed locally; in other installations it is
perhaps fixed differently or not at all. Minor or major
changes and local adaptations are made. Code is
changed without a corresponding change to docu-
mentation. Documentation is changed to correspond
to observed behavior without a full and detailed anal-
ysis of the precise semantics of the code within the
context of the total system under all possible envi-
ronmental conditions. Only at the moment of release
does there exist an authoritative version of the pro-
gram, the code, and its documentation. Even this may
include multiple versions of modules, say, for more
or less clearly defined alternative situations.

Some time after the release of a program or pro-
gram version, each designer, implementer, tester,
salesman, and user that has been exposed to or
worked with the system will have become thoroughly
conversant with, at least, those of its attributes and
characteristics that are considered at all relevant. The
resultant familiarity will have bred some degree of re-

laxation, of ability to work with the program in order
to accomplish specific objectives. The program will
be manipulated without uncertainty or concern and
used without (apparent) need for concentrated
thought. External perception of a program’s intrinsic
complexity will be at a minimum. For people working
consistently on or with the program, its perceived
complexity may be said to approach zero.

As changes are introduced, as the new release is
gradually created and becomes available, new and
unfamiliar code appears. The program behaves dif-
ferently in execution, in its interaction with and im-
pact on the environment. Pagination in the previously
familiar documentation has changed and any need for
reference entails a major search. The system has be-
come uncomfortably unfamiliar, the degree of unfa-
miliarity depending on the magnitude and extent of
the change.

A major intellectual effort is now required by each
person involved before any completely successful
and cost-effective interaction with the new system
can occur. The system has suddenly become strange.
Its perceived complexity is high.

Even those who participated in the preparation of
the new release will normally have been involved di-
rectly with only a small part of the changes, a small
portion of the system. They too must now learn to
understand the new system in its totality. Moreover,
until the complete system is available, all acquisition
of knowledge and understanding of the changes and
of the new system must be based on reading of code
and documentation text, or on partial execution of
system components on test cases or system models.
At least some part of system-internal interactions or
dependencies will be absent in such an environment.
Only with final integration of the new system does the
full executable program become available. We sug-
gest that when the release content exceeds some crit-
ical amount, only operational experience with the
complete system can bring or restore the degree of
knowledge and familiarity, the global viewpoint, that
is essential for subsequent cost-effective mainte-
nance, enhancement, and exploitation of the large
program.

Thus, in general, at the moment of release or
shortly before that time a major learning effort will
begin that involves all those associated with the sys-
tem, not just the users. All changes and additions
must be identified, understood, and experienced,
their significance appreciated within the operational
context of the total system. Once this has been done,
the old degree of comfort with the system will return
and its perceived complexity once again will approach
zero; the level of familiarity has been restored.

Laws, Evolution and Conservation 219

The amount of work that must be invested, the in-
tellectual effort required to achieve this, depends
among other factors on the attitudes of people, on the
organization, and on the number, magnitude, and
complexity of changes introduced. Because changes
to the system interact with one another, because
changes implemented in the same release must be
understood in the context of all other changes being
concurrently implemented as well as in the context of
the unchanged parts of the system and of past and fu-
ture applications, the relationship between the release
content and the amount of intellectual effort needed
to absorb the changes introduced by a new release
fully is at least quadratic. But whatever the precise
relationship between the difficulty of restoring famil-
iarity with the program and the magnitude of the re-
lease content, it will be of the general form indicated
in Figure 1.

The axes of the curve are not calibrated since at
present neither concept nor suitable measures are
well defined. Our concept of “difficulty” relates to
that of Norden and of Putnam [10,111. They, how-
ever, are concerned with difficulty of implementation,
whereas our concern is with understanding the
changes within the context of the total system and
their implications with regard to its operational be-
havior. Although related, since one cannot (should
not?) implement without understanding, the concepts
are clearly not identical.

The Averaging of Ability Through Human
Interactions

It must be left to the future to identify or define mea-
sures and provide an improved formulation of the fifth
law. Meanwhile we must clarify the basic concepts
and increase understanding of, at least, the phenom-

Figure 1. Difficulty-release-content relationship. A, above
threshold: B, below threshold.

enology; thereby we shall provide a basis for ultimate
formalization.

Everyone’s ability to master a new or changed ob-
ject is limited, though people clearly differ in their
ability to absorb new knowledge (e.g., to achieve full
understanding of the changed program). Thus the im-
pact of changes will vary from person to person ac-
cording to many factors that will include, but are not
limited to, their learning ability and absorptive capac-
ity. For a given large program with which many peo-
ple are inevitably involved, the direct and indirect
costs of familiarization (delays incurred, mistakes
made. destructuring, etc.) relate to the average ability
of all the people involved. This average will not
change significantly with time or. with the detailed
composition of the group.

In the implementation environment. for example,

although the above-average person will regain mas-
tery more quickly, make fewer mistakes, and achieve
a temporary advantage (which might lead to promo-
tion or transferal to another project). the below-av-
erage person will fall behind, perhaps lose contact,
make more mistakes, and do more damage. This per-
son may well be reassigned to a less demanding role,
one with less impact, or even be fired. But the damage
will have been done: others will have to do additional
work to apply corrective action. Since hiring policies
are related to the already established makeup of the
project, the average capacity to understand will, at
best, remain unchanged; more probably it will decline
LIZI.

In the application and user environment, the ca-
pable individual will master the changes relatively
quickly and carry on with assigned responsibilities.
experience minimal perturbation. and cause no im-
pact on others. The less capable. on the other hand,
will have to discuss with others their difficulties in
fully appreciating the changes. They will even mis-
interpret documentation or system behavior and re-
port difficulties or faults that are, in fact. nonexistent.
Such discussions or reports will cause delays or dis-
ruptions in the project, and may even lead to erro-
neous repair. Once again the presence of persons with
greater than average difficulty in refamiliarization has
a project impact that ranges beyond the immediate
bound of responsibility of these individuals. It results
in an o\~e~al/ slowdown in the return to normalcy after
change, the time required being determined by u\‘-
c~,-tr~~c~ ability.

For different organizations, systems. structures.
methodologies, and processes, the average level will,
of course, be different. This implies that any models
will contain exogenous variables. These variables
point to a potential for improving the average absorp-

220 M. M. Lehman

tion level, once the phenomenon, the organization,
and the programming process are understood.

Conservation of Familiarity and Statistically
Invariant Release Content

Given the above insights into (1) the increased diffi-
culty of understanding changes and their implications
as release content increases and (2) the mechanism of
the slow down of both utilization and further evolu-
tion as system structure deteriorates, the number of
faults increases, documentation lags, and perfor-
mance declines, we are now in a position to appreciate
the fifth law.

If the release content, the magnitude of change
and/or the incremental growth, is less than some
threshold region T (Figure l), the integration and op-
erational installation of the new system should be
fairly straightforward. No major problems should be
experienced in mastering the new release; it may well
be that the change may be absorbed and familiarity
restored without actual operational disturbance.

The very ease of the refamiliarization process in
conjunction with the never-ending search for produc-
tivity growth will, however, create a managerial cli-
mate in which more ambitious releases that will chal-
lenge system capability and may well flout its natural
parameters will be attempted. A pressure is created
that tends to move subsequent releases from the B
region (Figure 1) into or above the threshold region
T.

When the release content lies in T (which may not
be precisely delineable), quality, performance, com-
pletion, and installation problems are to be expected.
Slippage and cost overrun will probably occur. A sub-
sequent release may be required to clean up the sys-
tem and restore it to a state that permits further cost-
effective evolution. This experience will certainly not
encourage management to demand an increase in re-
lease content. The next release will tend to be in the
same threshold region or even below it.

Finally, if a release is attempted whose content ex-
ceeds that of the T region and moves into A, serious
problems will be encountered. Slippage and cost
overrun will occur unless plans take account of the
greatly increased difficulties that will be experienced.
If not properly planned, such an attempt may lead to
the effective collapse of the system or, as we have
observed in at least two instances, to an effect that we
have termed system jssion. Since only release of the
system to end users and to the developers provides
full exposure, even when adequate resources and
time have been provided, such a release will still have
to be followed by a restoration or clean-up release.

This results in one or more successor releases in the
B region of the characteristic curve of Figure 1.

It was the repeated observation of the above pat-
terns of release behavior that suggested the analysis
and led to the insights summarized in the preceding
paragraphs. Our analysis suggests that the conse-
quences of feedback in the process, in conjunction
with the nonlinear characteristics indicated in Figure
1, lead (over several releases) to stabilization of re-
lease content in or just below the threshold region.
We have not yet attempted to create an analytic model
of this effect, but it should not prove too difficult to
build and validate [131.

The fifth law abstracts both the observations and
their interpretation including the emergence of invar-
iant average incremental growth or release content.
The latter is also a consequence of the additional ex-
ogenous pressure for accelerated functional growth
of content that is characteristic of large-program ap-
plications and, in general, of organizational environ-
ments. Once again the law suggests that managers and
planners take note of project and system invariances;
when formulating plans, they must respect the limi-
tations the invariances imply or accept the inevitable
consequences.

FINAL COMMENTS

The first recognition of the laws discussed was based
entirely on an examination and analysis of data from
a variety of programs and systems, both large and not
so large. To make the transition from phenomenology
to science, however, the laws, once formulated, must
be examined in their own right. The laws of large-pro-
gram development and evolution are now beginning
to be understood in this way. They are seen to express
very basic attributes of computing, of the program-
ming development, maintenance, and usage pro-
cesses, of programs themselves, and of the organi-
zations and environments in which these activities are
carried out.

Once this interpretation of the laws in terms of
more fundamental phenomena has been achieved, the
old data must be reexamined and new information
examined in the light of the laws as understood. De-
viations must be explained and interpreted; contra-
dictions may require reformulation and reinterpreta-
tion of a law, or even its rejection.

There is, of course, nothing new in these com-
ments: they form the very basis of the scientific
method. They are added here, however, to assert the
belief that the laws as formulated have been substan-
tiated by experience and by experimental data to the
point where they can stand in their own right until

Laws, Evolution and Conservation 221

evidence and developing insight and understanding

demand their change-or until we can so change sys-
tem structure, process methodology and character-
istics. and programmer and user practice and habits,
that the laws as formulated no longer apply.

ACKNOWLEDGMENT

Although the author must bearfull responsibilityforthe present

text, the understanding, concepts, and interpretations here pre-
sented were developed over a period of years in close collab-

oration with L. A. Belady, F. M. Parr, and others. My grateful
thanks and appreciation are due to all of them. More immedi-

ately I am deeply grateful to W. M. Turski for an extended in-

terchange of ideas and for his detailed critique of the draft man-

uscript of this paper. The clarity of his thinking and expression
and our mutual stimulation has resulted in a major advance in
the formalization and understanding of the evolution dynamics

concepts, though these advances are excluded from the pres-

ent text except in that we have revised the wording of the laws
to that presented in Table 1.

REFERENCES

I. M. M. Lehman, The Software Engineering Environ-

ment. in Str-llcrrrrrd Sofiuxre D~~\&prne,~r. Infotech
State of the Art Report. 1979, Vol. 2, pp. 147-163.

2. M M. Lehman, Laws and Conservation in Large-Pro-
gram Evolution. in Srt or~i Sqfin,nrr L* C,de MUH-

f7,~,~777f'171 WorX.shop. Atlanta, Georgia, 21-22 August.
1978. IEEE Cat. No. 78CHl390-4C, pp. 140-145.

3. L. A. Belady and M. M. Lehman, Characteristics of
Large Systems. in Resfwrch Diwctims in Sofin~7w

Tcc~/777o/oqy. Proceedings of the Conference on Re-
search Direction in Software Technology, 19-12 Oc-
tober 1977, Brown University, Providence, Rhode Is-
land. Sponsored by the Tri-Services Committee of the
DOD. MIT Press, Cambridge, Massachusetts. Part I,
Chapter 3. pp. 106-142.

4. M. M. Lehman, Human Thought and Action as an ln-

gredient of System Behaviour. in E77(,~(,/oprrf,tlirr cj,f'ly-

7701'f777w (Duncan and Weston-Smith, eds.). Pergamon,
New York. 1977, pp. 347-354.

5. H. A. Simon, Tl7c Sf~io7c~c~\ ~?/'r/7c,,~~ti!ic~irri, MIT Pres\.
Cambridge. Massachusetts. 1969.

6. M. M. Lehman, Programs. Cities. Students-Limits to
Growth’? in Progrtr77777zi77~ Mctl7othlo,y~ (D. C;ries.

ed.), first published as an inaugural lecture. I4 May 1974

and in the Imperial College of Science and Technology
Inaugural Lecture Series, vol. 9. 1970-1974. pp. 21 l-

229. Springer Verlag. New I’ork, 1979. pp. 42-69.
7. M. M. Lehman. Laws of Program Evolution-Rules

and Tools for Programming Management. in W/r>, So/i-
IIX~(J I'r.c!jcct.t Ftril. Proceedings of1nfotech State of the
Art Conference. 9-11 April 1978. pp. 11~l-ll~25

8. F. P. Brooks. 711~ M~~tlric~trl Mrr7~-~21~~7~t17--I_J.~.scc~.~ 017

Sofin,tr,r B7,yi77co?r7~. Addison-We4ey. Reading,

Massachusetts, 1975.

9. I,. A. Belady and M. M. Lehman. P,.o:~7.rr7?7777irr~ .~I,.+

tct77 I)y77rr777ic~.s 07. tl7c ,~,lc,ttr-l)~77rr777ic..\ of' .I‘y.,tt,tf7s it7

Mf7i77te77rr77cc tr77tl Growth, IBM Ke\carch Kepvrt
RC3546. September 1971. p. 30.

IO. P. V. Norden. Project Life Cycle Modelling, in .S,~fi-
1!‘(,1’(’ P/rc,77o777c~77o/c~~~-~~~~7.~i77~ Ptrpc~r\ cJ/'tl7r, CF'i7:sti

SLCM Wor.Lc.l7op, Airlie. Virginia. August 1977. Pub-
lished by ISRADIAIRMICS. Computer Systems Com-
mand. U.S. Army, Fort Bclvoir. Virginia. December

1977. pp. ‘17-306.
II. L. H. Putnam, The Influence of the Time-Difficulty

Factor in Large Scale Software Development. lot,. c Jr..
pp. 307-312.

12. M. M. Lehman. klct/ioc~7?t\' i/7 \fitlt//c, Worrtrcc,777c~,rt.

unpublished ms. 1969.
13. C. M. Woodside. A ~~lf7tlrc~777trtic~trl ~lloc/f~/ /or tlrv I:l,o-

I77tio77 o/ .Sq/i~~~rrc~. Dept. of Computing and Control

Research Report CCD 79155, April 1979.

