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Supplementary Materials: Grounded language acquisition
through the eyes and ears of a single child

S.1. The CVCL Model

The CVCL model (Child’s View for Contrastive Learning) takes in child-directed utterances

paired with temporally aligned image frames, with the goal of learning multimodal representa-

tions that align information from visual and linguistic modalities and thereby grounding words

to their visual referents. Significant advances in multimodal learning using contrastive ap-

proaches (24, 25, 35) were spurred by the discovery that such models can learn generalizable

representations that enable zero-shot classification. Contrastive approaches learn by treating

an image and its corresponding utterance as a matching pair, while treating any other image or

utterance as a mismatching pair, aiming to push embeddings for the former closer together while

pushing away embeddings for the latter. This approach is represented in Figure 1B.

Vision Encoder. We use a ResNeXt-50 32x4d convolutional neural network (CNN) ar-

chitecture as our vision encoder f✓ (68). The CNN was initialized with pre-trained weights

obtained via self-supervised learning on 194 hours of egocentric visual data only from this child

using the DINO algorithm (69). The pre-trained model is available from the following public

GitHub repository: https://github.com/eminorhan/silicon-menagerie with

the model identifier string ‘dino_sfp_resnext50’. Previous work from (32, 47) showed

that self-supervised approaches on rich, developmental datasets could learn high-quality repre-

sentations of visual features. The backbone of this vision encoder was frozen, and combined

with a trainable linear projection layer that embedded images into a shared multimodal space,

with the embedding size set to 512 for all models.

Because each utterance was associated with multiple frames extracted around a short temporal

window, during training we randomly sampled one of these frames as the matching image frame
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associated with a given utterance. We also applied data augmentation to images during training,

using the same set of augmentations as described in (32), with the exception of ColorJitter as it

breaks the correspondence between color words and color in images.

Language Encoder. We used a simple Embedding layer as our language encoder f�. In the

Embedding encoder, the model learns a separate embedding (of size D=512) for each word in

its vocabulary. To obtain a single embedding for an utterance containing multiple words, an

embedding for each word was separately retrieved via the trained embedding layer and then

averaged across each of the resulting word embeddings.

Contrastive Loss. For a given mini-batch of frames and their corresponding child-directed

utterances, image embeddings are obtained by passing image frames separately through the

vision encoder:

vi = f✓(xi). (1)

Likewise, text embeddings are obtained by passing utterances separately through the language

encoder:

ui = f�(wi). (2)

After obtaining the image and text embeddings, they were both normalized, and we calculated

two different contrastive losses (based on the cross-entropy) that either tried to match each frame

with its corresponding utterance in the mini-batch:

Lframe = � 1

N

NX

i

log
exp(vi

Tui/⌧)PN
j=1 exp(vi

Tuj/⌧)
, (3)

or match each utterance to its corresponding frame:
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Lutterance = � 1

N

NX

i

log
exp(ui

Tvi/⌧)PN
j=1 exp(ui

Tvj/⌧)
. (4)

All other possible pairings besides the true pairing within a given mini-batch were treated as

mismatches. Finally, these two losses were combined and served as our joint contrastive loss to

train our multimodal neural network:

L =
1

2
Lframe +

1

2
Lutterance. (5)

S.2. Alternative Models

In addition to the main CVCL model we present in the main text, we also evaluated a number of

variants and control models:

CLIP. We utilized CLIP ViT-L/14 (25) as one upper bound for zero-shot classification

performance. Images and category labels were pre-processed and tokenized using the same

respective procedures as in the original CLIP model. Because CLIP is also trained via contrastive

learning with the ability to perform zero-shot classification, no other modifications were required

for it to make predictions on our main Labeled-S evaluation dataset. In our case, we evaluate

CLIP directly using the same text prompt consisting only of the target category label, rather than

averaging across many different textual prompts as in the original work.

Linear Probe. As another upper bound estimate, we trained a series of linear probes, aiming

to measure the effect of direct supervision for the target concepts, using either 100%, 10% and

1% of the available labeled data. These linear probes were constructed by taking and freezing the

original pre-trained vision encoder obtained from self-supervision, and adding a trainable linear

output classification head, mapping visual features to a set of class labels. The use of linear probes

is common in self-supervised learning, as it provides a measure of the representational quality of

the visual features (54, 70). The linear probes were trained to directly predict category labels
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either from the training split of the original Labeled-S evaluation dataset (22-way classification),

or from the Konkle Objects evaluation dataset (64-way classification). Each linear probe was

trained for 100 epochs. We obtained predictions from the Linear Probe models by passing each

of the four evaluation images per trial through the trained probe separately, and outputting a

response based on the logit corresponding to the target category label which was largest across

the set of four images.

CVCL (Shuffled). As a lower bound, we trained a variant of the CVCL model, but where

the set of video frames associated with each utterance were randomly shuffled and paired with

new utterances. Shuffling the utterances breaks the consistency of co-occurrence information

across modalities, while retaining the same visual and linguistic inputs passed into the CVCL

model. This shuffling procedure was performed once before training commenced.

CVCL (Random Features). As a second lower bound estimate, this model was the same

as the CVCL model, but where the features from vision encoder were randomly initialized and

frozen during training, rather than leveraging pre-trained visual features from self-supervision.

This model captures whether words can be grounded from random visual features, rather than

learned visual features.

CVCL (LSTM). In this variant, the Embedding language encoder was replaced with a

single-layer LSTM (which was also randomly initialized and trained from scratch), to investigate

whether richer sequential language processing would be helpful for learning word-referent

mappings. The embedding and hidden sizes of the LSTM were set to 512, and Dropout was

set to 0.5 and applied after the input embedding. The text embedding for a given utterance was

obtained by passing the entire utterance through the LSTM and returning the final hidden state

of the LSTM.

CVCL (Single Frame). In this variant, instead of randomly sampling one of the multiple

associated video frames with each utterance during training, only the first frame associated with
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each utterance is used. This reduced the available paired visual information the model associated

with each utterance during training.

CVCL (Scratch). In this variant, rather than initializing the vision encoder with pre-trained

weights obtained via self-supervision (69), the vision encoder was randomly initialized and

fully trained from scratch using only the multimodal contrastive objective, allowing us to

examine whether visual pre-training was necessary for the acquisition of grounded word-referent

mappings.

CVCL (Transformer). To examine whether we can push CVCL even further towards

domain-general, generic learning, we replaced both the vision and language encoders with

Transformers (71). For the vision encoder, we used a ViT-B/14 Transformer that was pre-trained

via self-supervision on the SAYCam-S visual data alone (47). For the language encoder, we used

a single-layer text Transformer with 8 attention heads. Both encoders used learned rather than

fixed positional embeddings, thereby minimizing any domain-specific assumptions regarding the

ordering of information within each modality. Otherwise, the training procedure was the same as

CVCL.

Results. We evaluated these variants of the CVCL model on the Labeled-S dataset. In the

CVCL (LSTM) model, we replaced the Embedding language encoder with a Long Short-Term

Memory (LSTM) network (72), resulting in a slight decrease in classification performance

(M=58.9%). This finding suggests that visual concepts in Labeled-S can be meaningfully

grounded without necessarily requiring sequential language processing capabilities as imple-

mented in an LSTM. In the CVCL (Single Frame) model, the model was trained using only the

first frame from each paired utterance, rather than sampling one of multiple video frames around

a short temporal window. This also led to a slight, but negligible decrease in classification perfor-

mance (M=59.3%), suggesting that the additional visual temporal context provided a limited

benefit for classification performance. In the CVCL (Scratch) model, rather than initializing the

5



vision encoder with pre-trained weights obtained from self-supervision on the SAYCam-S video

data, we randomly initialized and trained it from scratch via contrastive learning exclusively. This

variant also resulted in only a small drop in classification performance (M=58.3%), suggesting

that prior high-level visual features are not a pre-requisite for grounding. Finally, our evaluations

on the CVCL (Transformer) model were comparable to CVCL, achieving an accuracy of 55.5%

(vs. 61.6% for CVCL) on the Labeled-S evaluation, and 33.0% (vs. 34.7% for CVCL) on the

Konkle Objects evaluation. These results show how the ideas behind CVCL can be taken further

to utilize even more generic forms of learning, without sacrificing much in terms of learnability

or performance.

S.3. Training Details

Each model was trained for up to 400 epochs using a batch size of 8, and the AdamW optimizer

(73) with a learning rate of 1e-4. The learning rate was adjusted using ReduceLROnPlateau with

a factor of 0.1 and a patience of 20, based on the validation loss. Weight decay of 0.1 was used

for all models. In all of our simulations, we set the temperature parameter ⌧ to be fixed at 0.07.

Early stopping was performed using the joint contrastive loss on the validation set. For each

model, we trained three models using different random seeds. Minimal hyperparameter tuning

was performed using a hyperparameter sweep.

S.4. Training Dataset (SAYCam-S)

To study the learnability of word-referent mappings, we required a developmentally representative

source of data. We used the SAYCam dataset (27), a longitudinal dataset consisting of egocentric

head-mounted camera recordings from 3 children (S, A, and Y). Recordings took place for a few

hours each week over the course of a few years, with 100-200 hours of recorded video data per

child.
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Our multimodal training dataset was constructed from the data from one of the three children 

(S), because it contained the largest proportion of naturalistic speech transcribed (61 hours, 

spanning 6 to 25 months of age). The vision encoder was pre-trained using the videos from 

this portion of the dataset, along with 133 hours of additional video-only egocentric data from 

the same child that was not transcribed. The relevant information from the transcripts were the 

transcribed utterance, the speaker and the timestamp of the spoken utterance (in seconds). As 

an initial pre-processing step, due to instances of long annotations spanning multiple minutes, 

we split annotated utterances into multiple shorter utterances using spaCy (accessed from 

https://spacy.io). The timestamps for each set of split-up utterances were marked by 

linearly interpolating between the original starting timestamp and the timestamp of the next 

original utterance (74). Next, we filtered the data to only include child-directed utterances, 

excluding any utterances produced by the child themselves. We excluded child-produced 

utterances, since many early utterances from the child contained a lot of babbling, and as our 

focus was on learning exclusively from the input that the child receives. We also applied the 

spaCy tokenizer on the filtered utterances from the training set to build the vocabulary, replacing 

anything annotated as inaudible and any tokens with a frequency less than 3 in the dataset 

with an <UNK> token, resulting in a vocabulary size of 2350. All transcripts were lowercased 

(although in some of our figures some child-directed utterances are capitalized for ease of 

reading). All utterances were truncated to a maximum length of 25 tokens.

Finally, using the timestamp information associated with each child-directed utterance, we 

extracted multiple video frames at a rate of 5fps from the beginning of the timestamp, either 

until the timestamp of the next utterance or until 32 frames were extracted (corresponding to
6.4s of video). Each frame was extracted by resizing the minor edge of the original 640 ⇥ 480

video frame to 256, and then applying a 224 ⇥ 224 square center crop positioned at 16 pixels

lower than the center of the frame (to remove timestamp information visible in the video frame

7

https://spacy.io


from the head-mounted camera).

The resulting dataset consists of 600,285 image frames paired with 37,486 child-directed 

utterances. The dataset was split by utterances into a 90%, 5%, 5% split for training, validation 

and testing purposes respectively. We randomly split the dataset, rather than preserving the 

temporal ordering of utterances, so that the model treats each frame-utterance pair as independent. 

In this work, we only use the training and validation splits, and leave the test split for future use. 

Table S.1 contains some additional descriptive statistics about this dataset.

Relative to image-text datasets like MS COCO (75), where the correspondence between 

images and their paired captions is relatively strong, the correspondence between utterances and 

image frames in the SAYCam-S dataset is much noisier, as shown in Figure 1A. Among datasets 

used to study language development, CHILDES (76) is primarily text-only, and other egocentric 

datasets collected from infants consist of shorter videos (measured in minutes) aggregated across 

multiple infants (77, 78). Thus, our dataset provides a unique opportunity for questions about 

the learnability of word-referent mappings from a developmentally representative, temporally 

extended, longitudinal source of data obtained from a single child.

S.5. Evaluation Datasets

Labeled-S Evaluation. We adapted the Labeled-S dataset from (32) to create our main evaluation

dataset. The original Labeled-S Dataset consisted of ⇠60K frames from 26 common visual 

categories extracted from videos of baby S. In order to examine the acquisition of word-referent

mappings, we re-purposed the images and category labels from this dataset to generate a large 

set of evaluation trials to evaluate the model’s ability to perform zero-shot visual classification. 

As a pre-processing step, images from 4 out of the 26 categories (carseat, couch, greenery 

and plushanimal) were excluded from our evaluation since their category labels were not present 

in our model’s vocabulary, leaving 22 categories for our evaluation. Note that all but a few of
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these categories are present in the MacArthur-Bates Communicative Development Inventories, 

the gold standard for tracking infant vocabulary (5) (the exceptions are floor, ground, road, sand 

and computer). Next, we split the dataset so that half of the images were used as a training set 

for a series of Linear Probes (see S.2 Alternative Models), while the other half of the images 

were used for testing by constructing a set of evaluation trials. These trials consisted of a target 

image from one category and its corresponding category label, and three other randomly sampled 

images from three other randomly sampled foil categories, as shown in Figures 1C and S.1 

(left-pane). For each category, we generated 100 distinct evaluation trials, for a total of 2200 

trials.

Model predictions were generated by first obtaining a text embedding of the category label 

via the models’ language encoder (79). Separately, we passed each image into the trained vision 

encoder to obtain a series of image embeddings. Then, the cosine similarity was computed 

between each image embedding and the target text embedding, and the model’s prediction based 

on the image whose cosine similarity with the target text embedding was largest, as depicted in 

Figure 1E. Note that in this evaluation, the category text embeddings are taken directly from the 

contrastive training procedure without any additional fine-tuning required.

Although these frames were originally extracted from the same videos as SAYCam-S, the 

differences between the objectives in training and evaluation tasks mean that visual-linguistic 

overlaps are not a substantive issue. Examining the two datasets more closely, we found 26 

instances (1%) of direct overlap, and approximately 5% of indirect overlap, see Figure S.8 for 

additional details and examples.

Labeled-S (Filtered) Evaluation. We also evaluated our model on a separate set of eval-

uation trials using images from a manually cleaned-up subset of Labeled-S, which we call 

Labeled-S (Filtered). Some of the images from the Labeled-S dataset contained a mixture of 

object and scene classes within the same image, for example, a chair in the kitchen, or a ball on
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the ground. This had the unintended effect of making certain evaluation trials more ambiguous

than expected, making it difficult to determine whether low performance for certain categories

was driven by a failure of learning, or ambiguity in the evaluation trials. To alleviate some of

these issues, we performed a two-step filtering procedure to create a cleaner evaluation dataset.

First, as an initial automated sweep, we used CLIP ViT-B/16 (25) to classify each image using

a 22-way classification (based on the categories in Labeled-S), and retained only the images

that were correctly classified. Second, we removed the scene classes (ground, floor, kitchen,

road, room, sand), as well as any superordinate classes (toy), leaving 15 unique classes. For

the remaining set of 15 classes, we performed a second filtering step by manually removing

any images that did not contain the target class within the image, or if multiple classes were

present, or if the image was too blurry, leaving us with a set of ⇠2.4K images. From this set, we

generated a separate evaluation dataset of 1500 trials (corresponding to 100 trials per category),

and re-evaluated CVCL on this set to check whether performance on the original versus filtered

evaluations were comparable. The results of this analysis are shown in Figure S.3, indicating that

the performance of CVCL increases modestly for the filtered set (64.7% to 72.6%). Nevertheless

we see no observed increase in performance for some of the lowest accuracy categories (basket,

hand, foot and table), suggesting that the model genuinely was unable to acquire these concepts.

Konkle Objects Evaluation. We generated an additional set of evaluations based on an

image dataset containing a large set of common object categories (33). This second evaluation

was designed to address two limitations of our Labeled-S evaluation dataset. First, the images in

the Labeled-S evaluation were from the same visual distribution that CVCL was trained on, so it

cannot address whether our models can generalize zero-shot to novel instances for learned visual

concepts. Second, the total number of visual categories (22) was limited due to the small set of

object categories that were previously annotated for baby S. Yet, many additional concepts are

present both visually and linguistically that were not included in these annotations, but that our
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model could still have acquired over the course of training.

Similar to the process for creating evaluations from the Labeled-S dataset, we filtered the

set of object categories to only include ones that were present in the model’s vocabulary, from

200 object categories to 64 object categories. For each image, we resized it to be 50% of its

original size, and then resized the overall image to be 224 ⇥ 224. For each exemplar in each

object category, we generated 5 independent evaluation trials in the same manner as above, with

examples shown in Figures 1D and S.1. This resulted in a second evaluation dataset consisting

of a total of 4763 evaluation trials. Surprisingly, there was little overlap between the visual

categories used in both evaluation datasets, with only five overlapping categories (which were

ball, crib, basket, cat and chair). Model predictions were obtained using exactly the same

procedure as the Labeled-S evaluation, again by taking the category text embeddings directly

from the contrastive training procedure without any additional fine-tuning required.
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S.6. Supplementary Figures and Tables

Train Validation Test

Number of utterances 33,737 1,874 1,875
Mean (SD) utterance length 6.67 (5.49) 6.59 (5.46) 6.62 (4.95)
Number of tokens 225,001 12,355 12,418
Number of frames 540,681 29,686 29,918
Mean frames per utterance 16.0 15.8 16.0
Out-of-vocabulary rate 1.99% 2.42% 2.79%

Table S.1: Descriptives for the SAYCam-S Dataset.
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car

puzzle

crib

ball tree

apple

hat

bucket

Labeled-S (SAYCam) Evaluation Trials Konkle Objects Evaluation Trials

Figure S.1: Additional examples from the Labeled-S (left) and Konkle Objects (right) evaluations. In each
example depicted, the target referent is presented on the left, alongside three other randomly sampled foil referents.
For the category label, the model was only presented with the single token corresponding to the target category
word (e.g. “ball”).
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Category SAYCam-S Linear Probe Linear Probe Linear Probe
(Training) (100%) (10%) (1%)

Ball 481 2106 211 22
Basket 19 74 8 1
Car 176 645 65 7
Cat 416 751 76 8
Chair 54 535 54 6
Computer 24 840 84 9
Crib 51 459 46 5
Door 44 1267 127 13
Floor 24 3572 358 36
Foot 114 407 41 5
Ground 18 1090 109 11
Hand 118 1546 155 16
Kitchen 12 1079 108 11
Paper 51 715 72 8
Puzzle 71 1529 153 16
Road 15 1740 174 18
Room 62 1979 198 20
Sand 85 318 32 4
Stairs 36 477 48 5
Table 21 1323 133 14
Toy 37 4307 431 44
Window 32 1188 119 12

Total 1961 27947 2802 291

Table S.2: Frequency of examples for the 22 Labeled-S categories for training CVCL and Linear Probes.
Each row represents either the word frequency of the category during training (from the SAYCam-S dataset), or
the number of supervised examples used to train the corresponding Linear Probe. The bottom row shows the total
frequency across all 22 categories.
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Category SAYCam-S Category SAYCam-S

Ball 481 Umbrella 18
Cat 416 Phone 17
Train 235 Knife 16
Socks 129 Bagel 11
Bottle 110 Bench 10
Camera 92 Cheese 10
Pants 91 Clock 10
Apple 77 Key 10
Watch 73 Hairbrush 9
Balloon 68 Rock 9
Bucket 59 Turtle 9
Chair 54 Airplane 8
Spoon 53 Ring 7
Crib 51 Sofa 7
Jacket 49 Broom 6
Juice 48 Stool 6
Bowl 46 Bell 5
Tree 46 Cookie 5
Backpack 44 Microwave 5
Bed 43 Scissors 5
Bird 36 Stamp 5
Button 34 Tv 5
Shoe 34 Coin 4
Dog 31 Necklace 4
Hat 28 Sandwich 4
Pen 27 Toothpaste 4
Leaves 26 Desk 3
Bike 23 Fan 3
Butterfly 23 Kayak 3
Cake 22 Pipe 3
Guitar 21 Pizza 3
Basket 19 Tricycle 3

Table S.3: Frequency of examples per category in the Konkle Objects evaluation. Each row represent the word
frequency of the 64 categories during training (from the SAYCam-S dataset).

15



Stairs Table Toy Window

Kitchen Paper Puzzle Road Room Sand

Crib Door Floor Foot Ground Hand

Ball Basket Car Cat Chair Computer

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

0
25
50
75

100

Model

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

Model CVCL Linear Probe (1%) Linear Probe (10%) Linear Probe (100%)

Figure S.2: CVCL vs. Linear Probe image classification accuracy for Labeled-S evaluations by target category.
In this figure, we compare the performance of the CVCL model to the three Linear Probe models trained with
varying levels of direct supervision. Direct supervision is most helpful for categories where the CVCL model is
close to chance, while in some cases the CVCL model outperforms any of the Linear Probes. Error bars represent
standard error across three models trained with different random seeds, and the dashed line represents chance
accuracy.
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Figure S.3: Comparison between CVCL by category on a subset of clean images from Labeled-S. We generated
a second version of the Labeled-S evaluation dataset, using a subset of non-overlapping categories (15 out of the
22 concepts), and manually filtering the dataset from ⇠60K to ⇠2.4K images to ensure they contained the target
referents. Our results show that for the concepts that CVCL had originally acquired, performance on this clean
evaluation dataset led to even stronger performance (M=72.3%), compared to 64.7% on the original evaluation
dataset for these 15 concepts. There was no substantial change in performance for the concepts the model had
originally failed to acquire.
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Figure S.4: Comparison of t-SNE plots derived from the cosine similarities between the mean image embed-
dings and text embeddings for CVCL and two lower bound variants. While CVCL’s image and text embeddings
show conceptual alignment between the visual and linguistic modalities, by computing the correlation between all
pairwise cosine similarities across modalities, no conceptual alignment was observed in either the CVCL (Random
Features) (r = �0.002, p = 0.97) or the CVCL (Shuffled) models (r = �0.01, p = 0.88).
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Figure S.5: Correlation between alignment distance in t-SNE space vs. CVCL’s classification performance.
There was a strong negative correlation observed between the alignment distance of concepts (calculated as the
Euclidean distance between a concept’s word embedding and the mean image embeddings), to its classification
performance on the Labeled-S evaluation (r = �0.65, p = 0.001), suggesting that concepts whose image and text
embeddings were closer to one another were easier to classify. To check for the robustness of this finding, we also
performed this analysis in the original embedding space (without t-SNE), which also demonstrated a significant
negative correlation (r = �0.84, p < 0.001).
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Figure S.6: Comparison between labeled frames versus most similar frames for all Labeled-S concepts. In
each plot, we visualize a subset of frame embeddings from the Labeled-S evaluation using t-SNE, where the blue
points on the left correspond to 100 randomly sampled frames per category, while the green points on the right
correspond to the 100 most similar frames (based on the cosine similarity to each concept’s word embedding using
CVCL), which roughly can be viewed as the extension of the word. Across many concepts, we see a strong overlap
between the true labeled points and the points predicted to be most similar from CVCL.
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Chair Hand Window

Cat Foot Table

Car Door Stairs

Basket Crib Puzzle

Ball Computer Paper

Figure S.7: Additional attention maps generated via Grad-CAM for fifteen different categories showing object
localization capabilities in CVCL. Each plot contains 4 different examples from a category, with the corresponding
normalized attention map below, where yellow indicates regions with the highest attention. Images from each
category were randomly selected from the set of manually filtered images from Labeled-S.Across the different
categories, we see a mix of positive and negative evidence for CVCL’s ability to localize referents within a scene.
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Figure S.8: Examining dataset overlap between training and evaluation frames. (A) A histogram of the cosine
similarity between each evaluation frame and its corresponding nearest neighbor in the training set (calculated using
image embeddings from the self-supervised CNN on frames from baby S (47)). Results are split based on whether
the training frames’ corresponding utterance matched the evaluation category or not. (B) Example evaluation frames
and their closest training frames (with matched utterances) for varying levels of cosine similarity. Indirect overlap
was considered as matched frames with a cosine similarity score greater than 0.95.
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27043744&dopt=Abstract
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