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The Hopfield model for a neural network is studied in the limit when the number p of stored pat- 

terns increases with the size N of the network, as p=aWN. It is shown that, despite its spin-glass 
features, the model exhibits associative memory for a < a,, a, 20.14. This is a result of the ex- 

istence at low temperature of 2p dynamically stable degenerate states, each of which is almost fully 

correlated with one of the patterns. These states become ground states at a < 0.05. The phase dia- 

gram of this rich spin-glass is described. 

PACS numbers: 87.30.Gy, 64.60.Cn, 75.10.Hk, 89.70.-+c 

Spin-glass models which exhibit features of learning, 
memory, and pattern recognition have become the 
focus of exciting numerical and analytical studies.'~* 
Of particular interest is Hopfield’s model of associative 
memory.! In this model of neural network, a given set 
of patterns is embedded in the “‘synaptic’’ interactions 
between the neurons so as to make these patterns 

dynamically stable. A crucial issue is the storage 
capacity of the network. In a previous work,* we have 
established the stability of the embedded patterns, 
under the severe restriction that the number of stored 
patterns, p, remains finite as the size of the network, 
N, approaches infinity. On the other hand, there have 
been apparently conflicting statements regarding the 
capacity of the system as p increases to infinity with N. 

Hopfield! concluded, on the basis of simulations and 
Gaussian noise arguments, that the system continues 
to provide associative memory for p<a.N, at T=0, 
with a,=0.1-0.2, but degrades rapidly when 
p=a,N. In apparent contrast, Weisbuch°? and Pos- 

ner® have proved that at 7 =O, the original patterns 
will be locally stable only if p < N/(21InN). 

In this Letter we study the model in the limit that p 

increases to infinity as p=aN. We have determined 
the properties of the stable and metastable states of the 
system, thereby resolving the issue of its storage 
capacity. Apart from their relevance to neural net- 
works the results reveal rich statistical mechanical 
properties which emerge from an unusual intertwining 
‘of ferromagnetic (FM) and spin-glass (SG) symmetry 
breaking. These features disappear for large a and the 
model approaches the spin-glass model of Kirkpatrick 
and Sherrington.’ 

The network of N neurons is modeled by WN spins, 
S;= +1. A pattern of neural firings corresponds to a 
spin configuration. The dynamics is modeled by a 
serial heat-bath Monte Carlo process,* governed by an 
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energy 

H=—-4+ 5 (1) > JyS)S; 
inj 

at temperature 7 (=8~'). The couplings (synaptic 
efficiencies) are constructed of p given spin configura- 
tions (patterns), according to 

] 
Jy = wD eter. 

with €# (= +1) quenched, independent, random vari- 
ables.2 They represent the p patterns, which were em- 
bedded in the system by a ‘‘learning’’ process. Re- 
trieval of memory is diagnosed as the dynamical per- 
sistence of a pattern, provoked by an external stimulus. 

The discussion centers, therefore, around the nature 
of persistent states of the underlying dynamical pro- 
cess, and hence about the stable states of the free en- 

ergy associated with AH. Of particular pertinence are 
questions about the correlation of the dynamically 

stable states with the €* and the dependence of those 
correlations on p. 

For finite p, as N— oo, the situation is rather clear’: 
(1) At a critical temperature (7,=1) the system un- 
dergoes a second-order phase transition, from a disor- 
dered phase to a phase of 2p degenerate free-energy 

ground states—each one a Mattis’ state, correlated 
with one of the embedded patterns {€#}. With defini- 
tion of the overlap of a state with the vth pattern as 

m’ = N13), (S;) €?, (3) 

where (...) denotes a thermal average, the uw Mattis 
state has m’=méd"". The local magnetization is 
(S;) =&m, and m=tanhBm. (2) Near 7,, the Mattis 
states are the only stable states. Below 7=0.46 addi- 

tional dynamically stable states appear, corresponding 

to well-defined mixtures of several patterns. The 

(2) 
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number of these metastable states increases as T de- 
creases. It also increases (at least exponentially) with 
increasing p. (3) The 2p ground states as well as the 
metastable (mixture) states are separated by free- 
energy barriers of O(N). 

We now proceed to the case of a finite a= p/N. We 
have evaluated the average free energy per spin, 

f=— ({InTrexp(—BAH)))/NB, of the Hamiltonian 
(1),(2) with p=aWN by the replica method. Here 
(¢{...)) denotes an average over the quenched disor- 
der {€#}. Since the system is fully connected, fcan be 
calculated exactly in the N— oo limit by a mean-field 
theory. Most of our discussion will be within the 
replica-symmetric theory.’ The occurrence and impli- 
cations of replica-symmetry breaking! will be dis- 
cussed at the end. 

In the present model, the low-temperature phase 

will have weak random overlaps with most of the pat- 

terns, each of which will be typically of O(1VN ). This 
can be realized from the fact that the zero-temperature 
energy per spin which is of order unity is just 
E=+a—3,(m")*, where m*“ are the overlaps de- 
fined in Eq. (3). However, it is possible that one or a 
finite number of overlaps condense macroscopically, 
i.e., retain a finite value as N— oo. We thus find 
three sets of order. parameters: (i) the macroscopic 
overlaps m“ with the patterns {7}, v=1,2,...,5 
These will be denoted by an s component vector m, 

where s remains finite as N— oo. (ii) The total mean 
square of the random overlaps with the other p — s pat- 

terns, denoted by 7, 
Na 

r=a7! > (((m")’)). (4) 
w>s 

(iii) The Edwards-Anderson!! order parameter 
q = (((S,)*)), which measures the local ordering. In 
terms of these quantities, fis given by 

— 1 w21 1 a _ _ (1—B)(1—4q) _ 
f= s5m’+ salB-'Infl—Bd-—q)]+ 1B —@) + Br(l—q) 

—B-!((in2coshB[(ar)”2z+m-é])). (5) 

The average ((...)) in Eq. (5) and in the following 
stands for averaging over the discrete distribution of & q=1-—CT, and r=(1—C)~?, with 
(€¥= +1, v=1,...,5s) and over a Gaussian variable z C= (2/mra)"2exp( — m2/2ra). (10) 
with zero mean and unit variance. The saddle-point 

equations for the order parameters are 

m= ((étanh@[(ar)”?2z+m-é])), (6) 

qg = ((tanh2B[(ar)'/2z+m-€])), (7) 

r=ql1—B(1—q)]7~?. (8) 

Note that the local field consists of two parts: A ‘‘fer- 
romagnetic’’ part m which results from the s con- 
densed overlaps and a ‘“‘spin-glass”’ part (ra)'/2z, gen- 
erated by the sum of the overlaps with the rest of the 
patterns. 
Equations (6)-(8) have two types of solutions which 
are locally stable to variations in g, 7, and m: (1) A 
solution with m=O, g,r#0Q. It represents a SG state 
which does not have a macroscopic overlap with any of 

the patterns. It does not contribute to associative 
memory and is truly ‘‘spurious.’’ (2) FM solutions 
with m+0 in addition to g and r. These solutions, 
which exist for sufficiently small a, make the system 
useful for associative memory. 

The most important FM solutions are characterized 

by macroscopic overlaps with a single pattern, m’ = m8"?. 
There are 2Na degenerate solutions of this type. As 

a— Q they approach the finite-p Mattis states. 
Zero temperature.—As 3 — oo, Eqs. (6)—(8) yield 

m=erf[m/(2ra)/2], (9) 

For a > a,=0.138, there is no solution with m0. 
As a decreases below a,, two solutions with m+0 ap- 
pear discontinuously. Out of the two, the one with the 

larger mis locally stable to variations in m. This solu- 
tion corresponds to a state which deviates only slightly 
from the precise stored pattern. The maximum devia- 
tion occurs at a=a,, where m=0.967, implying a 
1.5% error. The percentage of errors decreases to zero 
very rapidly with decreasing a, see Fig. 1. The energy 
spin of these states is (at T=0) 

=ta(l—r)—4m?. (11) 

At a=a,, E=—0.5014 and it approaches —0.5 as 
a—0. For a fully correlated state (s;,=&?), m=1, 
r=1, and E=—0.5. Thus, at finite a, the system is 

able to slightly lower its energy by relaxing a smail 
fraction of the spins, to accommodate for fluctuations 
in the overlaps of the other patterns. 

As a0, Eq. (9) gives asymptotically, m—~1 
— (2a/7)2 exp(—1/2a). The average number of er- 
rors is, therefore, 

N,=+N(1-—m) 

= N(a/21)/2 exp(—1/2a). (12) 

This result implies that the average fraction of errors 
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FIG. 1. Average percentage of errors in the FM states, as 

a function of a at 7 =0. 

N,/ N vanishes as a— 0 but the total number of errors 
vanishes only for a < (2InN)7~!, in agreement with 

the results of Refs. 5 and 6. Indeed, substituting 
a=(2xInN)~! in Eq. (12), one finds that 
N, ~ N“U-*. Here we have shown that with allowance 
for a small fraction of errors, very effectively controlled by 
small a, the system provides a useful mechanism for asso- 
ciated memory, at least up to a, = 0.14, in agreement 
with the estimate of Hopfield.! 

Note, that even for a > @,, there may still exist spin 
states, with nonzero m, which are stable to single spin 

flips. These states, however, will decay at finite 7 
much faster than the thermodynamically stable or me- 

tastable FM states below a@,, which are surrounded by 

barriers of order N. 
Equations (9) and (10) have a locally stable SG 

solution, m=0, r=[1+ (2/ma)/2]? for all a. Its en- 
ergy, Eq. (11), equals E= —1/m—(aa/2)"?. In the 
a— 0 limit, E—- —1/7, and C=B(1—q)~1. This 
limit coincides with the value of £F of the finite-p solu- 
tions, which mix n patterns, in the limit of 1— 00.4 
This indicates that, as p— oo, the numerous states 

which mix infinitely many patterns merge to form the 

present SG phase. Comparing the energies of the SG 
and the FM states we find that the SG energy is lower 
for 0.051 < a < 0.138, whereas the FM state becomes 
the absolute minimum!? below 0.051. 

Finite-temperature.—The Sg phase appears continu- 
ously as T decreases via a second-order transition. Ex- 

pansion of Eqs. (9) and (10) for small g and zero m. 
yields for the SG transition temperature the value of 
T,=1+-VJa. This phase is stable to the development 
of finite overlaps. The susceptibility of m with respect 
to its conjugate field h, dm/dh, is positive, for all 
T < T, in the SG phase. Indeed, above 7=1 other 
solutions do not exist for any a. For a<a,, FM 
states, with a single macroscopic overlap, m, appear 

discontinuously as T is decreased below Ty,(a). The 
mimimum value of 7y, is 0.07, ata=a,. Asa 0, 
Ty increases to 1 and m(7y,) vanishes, thus ap- 
proaching the finite-p continuous transition; see Fig. 2. 

Near Ty, the FM states are metastable. If 
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FIG. 2. Plots of critical temperatures of the FM states as a 

function of a. Ty is the temperature at which FM states 

first appear. 7, is the first-order transition at which these 

states become global minima. Replica-symmetry breaking 

occurs below 7p, which is displayed on an expanded scale in 

the inset. 

a < 0.051, they become the global minima of f below 
a temperature T,(a). At 7,(a@), there is a thermo- 
dynamic first-order transition from a SG to a FM state, 
accompanied by a jump in m, gq, and r, and by a latent 
heat. This transition is similar to that which occurs in 
a Landau theory of a scalar ° model.!? 7,(a@) in- 
creases from 0 at a=0.051 to unity at a=0O; see Fig. 
2. 

Additional FM solutions appear discontinuously for 

sufficiently small @ and 7: These solutions are charac- 
terized by m with more than one nonzero component. 
Some of these ‘‘mixture’’ states are metastable but 
none is an absolute minimum at any 7: This happens 
first below a=0.03, where a locally stable solution 
with three symmetric overlaps [m=m(1,1,1)] ap- 
pears. For example, at a=0.02 they appear below 
T=0.14. There are — (1/3!)(2Na)? degenerate me- 
tastable states of this type. In general, the critical 
values of Zand a below which mixture solutions exist 
decrease with increasing dimensionality s of m, as 

a,Tfj<1/s. As a— 0, these solution coincide with the 
finite-p mixture states, described in Ref. 4. Note the 
similar role played here by JT and a. The presence of 

either a thermal noise (7) or a static internal one (a) 

smooths the free-energy surface in m space, leading to 

the successive elimination of FM states as either 7 or 

qa increases. 

So far we have assumed that replica symmetry is un- 

broken. This is clearly incorrect at 7=0, where the 

entropy per spin is S= — +al[In(1—C)+C/(-C)] 
with C=B(1—q). It is negative for all replica- 
symmetric solutions, and hence is unphysical. The 

condition for stability of the replica-symmetric solu-
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tions is that the ‘‘eigenvalue’”’ 

=[1—BU—q) 2? —a@p?<(sech*#s[ (ra) ”2z + m-€])) 

be positive. We find that ’ < 0 in the SG solution, for 
all 7 < 7,. On the other hand, the FM solutions are 
Stable in a finite temperature regime, 7p < T < Ty. 
The instability temperature 7p (a) is shown in Fig. 2, 
for the states with single overlaps. It decreases very 
rapidly to zero with a, as 

Tr(a) ~ (80/92) /* exp(—1/2a). 

This symmetry breaking is not expected to modify 

most of our results. The existence, at small a, of SG 
and FM metastable, or stable, states still holds. Fur- 

thermore, the properties of the FM states, e.g., the 
average number of errors and the energy, are hardly 
affected, since their replica-symmetry breaking occurs 

(continuously) only at very low temperatures Tp, 

where the system is already almost completely ordered 

(q~1). This is also exemplified by the fact that the 
T=0 negative entropy of the replica-symmetric FM 

States is extremely small. Already at a,, S 
~ —1.4x1073 in the FM _ state, compared with 
—7x10-2 in the SG state and —1.6x107! in the 
model of Kirkpatrick and Sherrington.’ 

The free energy of the solution with broken replica 

symmetry is expected to be higher than that of the 
replica-symmetric one. Hence, the values of 7,.(a@) 

and the maximum value of a for which the FM states 
become the absolute minima will be higher than the 
above estimates, Fig. 2. Also, with replica-symmetry 
breaking, the value of a,., where metastable FM states 
first appear, may be slightly higher than 0.138. 

The most important implication of replica-symmetry 

breaking at low 7 concerns the structure of the states 
of the system. Calculations near T= 7, indicate that 

the symmetry-breaking scheme is of the same nature 

as that of the model of Kirkpatrick and Sherrington,’ 
with continuous-order functions g(x) and r(x) 
(0x1) replacing g and r.!° According to the ac- 
cepted interpretation of this scheme, the following re- 
markable organization of states, at small a and T7, 

emerges. States are first classified according to their 
macroscopic overlap m with the embedded patterns. 

This already leads to enormous degeneracy, with 2Na 

degenerate states overlapping (almost completely) 
with a single pattern. States with different macroscop- 
ic m are far apart from each other in phase space, and 

are separated by barriers of order N. Energy differ- 
ences between nondegenerate states (e.g., SG and 

FM) are proportional to N. On a finer level, each of 
these macroscopically different stable and metastable 

phases actually represents (at T=0) many (an infinity 
as N— co) degenerate states, organized in a hierarchi- 

(13) 

cal ultrametric structure.!4 These states have the same 
macroscopic properties but differ in the organization of 
their random components (i.e., the location of the 

‘‘errors’’). These macroscopically equivalent states 
are separated by barriers which are probably not higher 

than O(V/N ). 
We have studied the effect of the application of 

external fields conjugate to €;. Many new features ap- 
pear. They will be described in an extended presenta- 

tion of this work. 
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